Department of Nuclear Medicine, Chang Gung Memorial Hospital, No. 5 Fuxing Street, Gueishan Dist., Taoyuan 33305, Taiwan.
Phys Med Biol. 2018 Aug 30;63(17):175008. doi: 10.1088/1361-6560/aad94b.
In this study, we present an image denoising method for diffusion-weighted magnetic resonance imaging (DW-MRI) data. Our aim is to improve the estimation of intravoxel incoherent motion (IVIM) parameters using denoised DW-MRI data. A general-threshold filtering (GTF) reconstruction via total variation minimization has been proposed to improve image quality in few-view computed tomography. Here, we applied the combination of GTF and total difference to image denoising. Voxel-wise IVIM analysis was performed using both real and simulated DW-MRI data. Using an institutional review board-approved protocol with written informed consent, DW-MRI imaging was performed at a 3 T hybrid PET/MR system in 10 patients with Hodgkin lymphoma lesions. A simulated phantom consisting of four organs (liver, pancreas, spleen and kidney) was used to generate noisy DW-MRI data according to the IVIM model at different noise levels. DW-MRI data were denoised before IVIM parameter estimation. The proposed image denoising method was compared with the image denoising method using joint rank and edge constraints (JREC). The results of simulated data show that at the lower signal-to-noise ratios the proposed image denoising method outperformed the JREC method in terms of the accuracy and precision of the IVIM parameter estimates. The experimental results also show that the proposed image denoising method could yield better parametric images than the JREC method in terms of noise reduction and edge preservation.
在这项研究中,我们提出了一种用于弥散加权磁共振成像(DW-MRI)数据的图像去噪方法。我们的目的是使用去噪的 DW-MRI 数据来改进对体素内不相干运动(IVIM)参数的估计。已经提出了一种通过总变差最小化的广义阈值滤波(GTF)重建来改善少视角计算机断层扫描中的图像质量。在这里,我们将 GTF 和总差结合应用于图像去噪。使用真实和模拟 DW-MRI 数据进行体素内 IVIM 分析。使用机构审查委员会批准的协议并获得书面知情同意书,在 10 例霍奇金淋巴瘤病变的 3T 混合 PET/MR 系统上进行了 DW-MRI 成像。模拟体模由四个器官(肝、胰腺、脾和肾)组成,根据 IVIM 模型在不同噪声水平下生成噪声 DW-MRI 数据。在进行 IVIM 参数估计之前,对 DW-MRI 数据进行去噪。将所提出的图像去噪方法与使用联合秩和边缘约束(JREC)的图像去噪方法进行了比较。模拟数据的结果表明,在较低的信噪比下,所提出的图像去噪方法在 IVIM 参数估计的准确性和精度方面优于 JREC 方法。实验结果还表明,在所提出的图像去噪方法中,可以比 JREC 方法更好地降低噪声并保留边缘,从而获得更好的参数图像。