Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
Phys Rev Lett. 2018 Jul 27;121(4):047801. doi: 10.1103/PhysRevLett.121.047801.
Nonlinear extensional flows are common in polymer processing, but they remain challenging theoretically because dramatic stretching of chains deforms the entanglement network far from equilibrium. Here, we present coarse-grained simulations of extensional flows in entangled polymer melts for Rouse-Weissenberg numbers Wi_{R}=0.06-52 and Hencky strains ε≥6. Simulations reproduce experimental trends in extensional viscosity with time, rate, and molecular weight. Studies of molecular structure reveal an elongation and thinning of the confining tube with increasing Wi_{R}. The rising stress is quantitatively consistent with the decreasing entropy of chains at the equilibrium entanglement length. Molecular weight dependent trends in viscosity are related to a crossover from the Newtonian limit to a high rate limit that scales differently with chain length.
非线性拉伸流动在聚合物加工中很常见,但由于链的剧烈拉伸会使缠结网络在远离平衡的情况下变形,因此在理论上仍然具有挑战性。在这里,我们对缠结聚合物熔体的拉伸流动进行了粗粒化模拟,研究了 Rouse-Weissenberg 数 Wi_{R}=0.06-52 和 Hencky 应变量 ε≥6 的情况。模拟结果再现了拉伸粘度随时间、速率和分子量的实验趋势。对分子结构的研究表明,随着 Wi_{R}的增加,约束管会伸长变细。随着平衡缠结长度上的熵的减小,上升的应力与实验结果定量一致。粘度的分子量依赖性趋势与从牛顿极限到高速率极限的转变有关,而这种转变与链长的标度不同。