Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.).
Pharmacokinetic Sciences (J.L.D., N.C., M.N.M., J.C., M.G., G.R.I., U.A.A.) and Preclinical Safety (V.S.), Novartis Institutes for BioMedical Research, Cambridge, Massachusetts; and Novartis Institutes for BioMedical Research, Basel, Switzerland (G.C., M.W.)
Drug Metab Dispos. 2018 Nov;46(11):1670-1683. doi: 10.1124/dmd.118.082974. Epub 2018 Aug 15.
The eye is a complex organ with a series of anatomic barriers that provide protection from physical and chemical injury while maintaining homeostasis and function. The physiology of the eye is multifaceted, with dynamic flows and clearance mechanisms. This review highlights that in vitro ocular transport and metabolism models are confined by the availability of clinically relevant absorption, distribution, metabolism, and excretion (ADME) data. In vitro ocular transport models used for pharmacology and toxicity poorly predict ocular exposure. Although ocular cell lines cannot replicate in vivo conditions, these models can help rank-order new chemical entities in discovery. Historic ocular metabolism of small molecules was assumed to be inconsequential or assessed using authentic standards. While various in vitro models have been cited, no single system is perfect, and many must be used in combination. Several studies document the use of laboratory animals for the prediction of ocular pharmacokinetics in humans. This review focuses on the use of human-relevant and human-derived models which can be utilized in discovery and development to understand ocular disposition of new chemical entities. The benefits and caveats of each model are discussed. Furthermore, ADME case studies are summarized retrospectively and capture the ADME data collected for health authorities in the absence of definitive guidelines. Finally, we discuss the novel technologies and a hypothesis-driven ocular drug classification system to provide a holistic perspective on the ADME properties of drugs administered by the ocular route.
眼睛是一个复杂的器官,具有一系列解剖屏障,既能防止物理和化学伤害,又能维持内环境稳定和功能。眼睛的生理学是多方面的,具有动态的流动和清除机制。这篇综述强调,体外眼传输和代谢模型受到临床相关吸收、分布、代谢和排泄 (ADME) 数据的可用性限制。用于药理学和毒性的体外眼传输模型不能很好地预测眼部暴露。虽然眼细胞系不能复制体内条件,但这些模型可以帮助对新的化学实体进行排序。历史上小分子的眼部代谢被认为是不重要的,或者使用真实标准进行评估。虽然已经引用了各种体外模型,但没有一个系统是完美的,许多系统必须结合使用。有几项研究记录了使用实验室动物来预测人类的眼部药代动力学。这篇综述侧重于使用与人相关和源自人的模型,这些模型可用于发现和开发,以了解新化学实体在眼部的处置。讨论了每种模型的优点和缺点。此外,回顾性总结了 ADME 案例研究,并在缺乏明确指南的情况下为卫生当局收集了 ADME 数据。最后,我们讨论了新型技术和基于假设的眼部药物分类系统,为通过眼部途径给予的药物的 ADME 特性提供了整体视角。