Suppr超能文献

香豆素葡萄糖苷、秦皮乙素揭示了韧皮部运输速度对环境信号的快速变化的响应。

The Coumarin Glucoside, Esculin, Reveals Rapid Changes in Phloem-Transport Velocity in Response to Environmental Cues.

机构信息

Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom

Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.

出版信息

Plant Physiol. 2018 Oct;178(2):795-807. doi: 10.1104/pp.18.00574. Epub 2018 Aug 15.

Abstract

The study of phloem transport and its vital roles in long-distance communication and carbon allocation have been hampered by a lack of suitable tools that allow high-throughput, real-time studies. Esculin, a fluorescent coumarin glucoside, is recognized by Suc transporters, including AtSUC2, which loads it into the phloem for translocation to sink tissues. These properties make it an ideal tool for use in live-imaging experiments, where it acts as a surrogate for Suc. Here, we show that esculin is translocated with a similar efficiency to Suc and, because of its ease of application and detection, demonstrate that it is an ideal tool for in vivo studies of phloem transport. We used esculin to determine the effect of different environmental cues on the velocity of phloem transport. We provide evidence that fluctuations in cotyledon Suc levels influence phloem velocity rapidly, supporting the pressure-flow model of phloem transport. Under acute changes in light levels, the phloem velocity mirrored changes in the expression of This observation suggests that under certain environmental conditions, transcriptional regulation may affect the abundance of AtSUC2 and thus regulate the phloem transport velocity.

摘要

韧皮部运输及其在长距离通讯和碳分配中的重要作用的研究受到缺乏合适工具的阻碍,这些工具可以实现高通量、实时研究。七叶灵,一种荧光香豆素糖苷,被包括 AtSUC2 在内的蔗糖转运体识别,AtSUC2 将其装载到韧皮部进行转运到汇组织。这些特性使其成为活体成像实验中的理想工具,在活体成像实验中,它可以作为蔗糖的替代物。在这里,我们表明七叶灵与蔗糖的转运效率相似,并且由于其易于应用和检测,证明它是研究韧皮部运输的体内研究的理想工具。我们使用七叶灵来确定不同环境线索对韧皮部运输速度的影响。我们提供的证据表明,子叶蔗糖水平的波动会迅速影响韧皮部速度,这支持了韧皮部运输的压力流模型。在光水平的急性变化下,韧皮部速度反映了 This observation suggests that under certain environmental conditions, transcriptional regulation may affect the abundance of AtSUC2 and thus regulate the phloem transport velocity.的表达变化。这一观察表明,在某些环境条件下,转录调控可能会影响 AtSUC2 的丰度,从而调节韧皮部运输速度。

相似文献

1
The Coumarin Glucoside, Esculin, Reveals Rapid Changes in Phloem-Transport Velocity in Response to Environmental Cues.
Plant Physiol. 2018 Oct;178(2):795-807. doi: 10.1104/pp.18.00574. Epub 2018 Aug 15.
2
Multispectral phloem-mobile probes: properties and applications.
Plant Physiol. 2015 Apr;167(4):1211-20. doi: 10.1104/pp.114.255414. Epub 2015 Feb 4.
4
6
AtSUC2 has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies.
Plant Sci. 2012 Jun;188-189:97-101. doi: 10.1016/j.plantsci.2011.12.018. Epub 2012 Jan 18.
9
Measuring Sucrose Transporter Activities Using a Protoplast-Esculin Assay.
Methods Mol Biol. 2019;2014:253-266. doi: 10.1007/978-1-4939-9562-2_21.

引用本文的文献

4
Monitoring Xylem Transport in Arabidopsis thaliana Seedlings Using Fluorescent Dyes.
Methods Mol Biol. 2024;2722:3-15. doi: 10.1007/978-1-0716-3477-6_1.
5
Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport.
Plant Cell Physiol. 2023 Mar 15;64(3):352-362. doi: 10.1093/pcp/pcad003.
6
JULGI-mediated increment in phloem transport capacity relates to fruit yield in tomato.
Plant Biotechnol J. 2022 Aug;20(8):1533-1545. doi: 10.1111/pbi.13831. Epub 2022 May 17.
7
A spatial model of the plant circadian clock reveals design principles for coordinated timing.
Mol Syst Biol. 2022 Mar;18(3):e10140. doi: 10.15252/msb.202010140.
8
Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6223-6230. doi: 10.1073/pnas.1912754117. Epub 2020 Mar 2.
9
Lateral Transport of Organic and Inorganic Solutes.
Plants (Basel). 2019 Jan 15;8(1):20. doi: 10.3390/plants8010020.

本文引用的文献

1
Tansley Review No. 27 The control of carbon partitioning in plants.
New Phytol. 1990 Nov;116(3):341-381. doi: 10.1111/j.1469-8137.1990.tb00524.x.
2
Using the short-lived isotope 11C in mechanistic studies of photosynthate transport.
Funct Plant Biol. 2003 Sep;30(8):831-841. doi: 10.1071/FP03008.
3
4
Regulation of Sucrose Transporters and Phloem Loading in Response to Environmental Cues.
Plant Physiol. 2018 Jan;176(1):930-945. doi: 10.1104/pp.17.01088. Epub 2017 Nov 20.
5
Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters.
Planta. 2018 Mar;247(3):587-611. doi: 10.1007/s00425-017-2807-4. Epub 2017 Nov 14.
7
Lost in Transit: Long-Distance Trafficking and Phloem Unloading of Protein Signals in Arabidopsis Homografts.
Plant Cell. 2016 Sep;28(9):2016-2025. doi: 10.1105/tpc.16.00249. Epub 2016 Sep 6.
8
Testing the Münch hypothesis of long distance phloem transport in plants.
Elife. 2016 Jun 2;5:e15341. doi: 10.7554/eLife.15341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验