Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13582-13586. doi: 10.1002/anie.201809056. Epub 2018 Sep 14.
RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation). Specifically, we study how the tail length, tail geometry, and linker spacing in diketopiperazine lipid materials influences LNP potency with siRNAs and mRNAs. Eight lipid materials are synthesized, and 16 total formulations are screened for activity in vitro; the lead material is evaluated with mRNA for in vivo use and demonstrates luciferase protein expression in the spleen. In undertaking this approach, not only do we develop synthetic routes to delivery materials, but we also reveal structural criteria that could be useful for developing next-generation delivery materials for RNA therapeutics.
鉴于 RNA 能够在细胞水平调节蛋白质浓度,它们是一类很有前途的治疗药物。开发安全有效的 RNA 递送策略对于实现其全部临床潜力仍然很重要。在这里,我们开发了能够递送小干扰 RNA(用于基因沉默)或信使 RNA(用于基因上调)的脂质纳米颗粒制剂。具体来说,我们研究了二酮哌嗪脂质材料中的尾部长度、尾部几何形状和连接体间隔如何影响 LNP 与 siRNA 和 mRNA 的效力。合成了 8 种脂质材料,并筛选了 16 种总制剂的体外活性;选用先导材料进行体内 mRNA 评估,并在脾脏中显示出荧光素酶蛋白表达。通过采用这种方法,我们不仅开发了递送材料的合成途径,还揭示了可能对开发下一代 RNA 治疗药物递送材料有用的结构标准。