Suppr超能文献

可定制化脂质纳米颗粒材料用于 siRNA 和 mRNA 的递送。

Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13582-13586. doi: 10.1002/anie.201809056. Epub 2018 Sep 14.

Abstract

RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation). Specifically, we study how the tail length, tail geometry, and linker spacing in diketopiperazine lipid materials influences LNP potency with siRNAs and mRNAs. Eight lipid materials are synthesized, and 16 total formulations are screened for activity in vitro; the lead material is evaluated with mRNA for in vivo use and demonstrates luciferase protein expression in the spleen. In undertaking this approach, not only do we develop synthetic routes to delivery materials, but we also reveal structural criteria that could be useful for developing next-generation delivery materials for RNA therapeutics.

摘要

鉴于 RNA 能够在细胞水平调节蛋白质浓度,它们是一类很有前途的治疗药物。开发安全有效的 RNA 递送策略对于实现其全部临床潜力仍然很重要。在这里,我们开发了能够递送小干扰 RNA(用于基因沉默)或信使 RNA(用于基因上调)的脂质纳米颗粒制剂。具体来说,我们研究了二酮哌嗪脂质材料中的尾部长度、尾部几何形状和连接体间隔如何影响 LNP 与 siRNA 和 mRNA 的效力。合成了 8 种脂质材料,并筛选了 16 种总制剂的体外活性;选用先导材料进行体内 mRNA 评估,并在脾脏中显示出荧光素酶蛋白表达。通过采用这种方法,我们不仅开发了递送材料的合成途径,还揭示了可能对开发下一代 RNA 治疗药物递送材料有用的结构标准。

相似文献

1
Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13582-13586. doi: 10.1002/anie.201809056. Epub 2018 Sep 14.
2
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
3
Lipid nanoparticles for short interfering RNA delivery.
Adv Genet. 2014;88:71-110. doi: 10.1016/B978-0-12-800148-6.00004-3.
4
Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9.
5
Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery.
Molecules. 2023 May 12;28(10):4046. doi: 10.3390/molecules28104046.
6
Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs.
Nano Lett. 2015 Nov 11;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub 2015 Oct 20.
7
A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes.
Adv Mater. 2020 Mar;32(12):e1906128. doi: 10.1002/adma.201906128. Epub 2020 Jan 30.
8
10
Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH.
Small. 2019 Feb;15(6):e1805097. doi: 10.1002/smll.201805097. Epub 2019 Jan 13.

引用本文的文献

1
CloneFast: A simple plasmid design and construction guide for labs venturing into synthetic biology.
STAR Protoc. 2025 Aug 6;6(3):104025. doi: 10.1016/j.xpro.2025.104025.
2
Customizable Polymeric Nanoparticle Materials Optimized on Hypoxic Cells Facilitate mRNA Expression in the Lungs In Vivo.
Adv Healthc Mater. 2025 Jul;14(17):e2500245. doi: 10.1002/adhm.202500245. Epub 2025 May 27.
3
Tailoring Alkyl Side Chains of Ionizable Amino-Polyesters for Enhanced In Vivo mRNA Delivery.
ACS Appl Bio Mater. 2025 May 19;8(5):3958-3971. doi: 10.1021/acsabm.5c00116. Epub 2025 Apr 28.
4
mRNA lipid nanoparticle formulation, characterization and evaluation.
Nat Protoc. 2025 Mar 11. doi: 10.1038/s41596-024-01134-4.
5
On-patient medical record and mRNA therapeutics using intradermal microneedles.
Nat Mater. 2025 May;24(5):794-803. doi: 10.1038/s41563-024-02115-4. Epub 2025 Feb 24.
6
A Reverse Transcription Nucleic-Acid-Based Barcoding System for Measurement of Lipid Nanoparticle mRNA Delivery.
ACS Bio Med Chem Au. 2025 Feb 5;5(1):35-41. doi: 10.1021/acsbiomedchemau.4c00081. eCollection 2025 Feb 19.
8
Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy.
Front Immunol. 2024 Nov 25;15:1448489. doi: 10.3389/fimmu.2024.1448489. eCollection 2024.
9
Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response.
ACS Nano. 2024 Dec 3;18(48):33058-33072. doi: 10.1021/acsnano.4c08490. Epub 2024 Nov 20.

本文引用的文献

1
Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5859-E5866. doi: 10.1073/pnas.1805358115. Epub 2018 Jun 11.
2
Advances in Biomaterials for Drug Delivery.
Adv Mater. 2018 May 7:e1705328. doi: 10.1002/adma.201705328.
3
Alnylam prepares to land first RNAi drug approval.
Nat Rev Drug Discov. 2018 Feb 28;17(3):156-157. doi: 10.1038/nrd.2018.20.
4
Systemic mRNA Delivery to the Lungs by Functional Polyester-based Carriers.
Biomacromolecules. 2017 Dec 11;18(12):4307-4315. doi: 10.1021/acs.biomac.7b01356. Epub 2017 Nov 27.
6
Advances in the delivery of RNA therapeutics: from concept to clinical reality.
Genome Med. 2017 Jun 27;9(1):60. doi: 10.1186/s13073-017-0450-0.
7
Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy.
Nano Lett. 2017 Mar 8;17(3):1326-1335. doi: 10.1021/acs.nanolett.6b03329. Epub 2016 Dec 5.
9
Systemic delivery of factor IX messenger RNA for protein replacement therapy.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1941-E1950. doi: 10.1073/pnas.1619653114. Epub 2017 Feb 15.
10
Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E448-E456. doi: 10.1073/pnas.1614193114. Epub 2017 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验