Suppr超能文献

使用分割网络构建极少量数据的医学图像分类器。

Building medical image classifiers with very limited data using segmentation networks.

机构信息

IBM Research - Almaden Research Center, San Jose, CA, USA.

出版信息

Med Image Anal. 2018 Oct;49:105-116. doi: 10.1016/j.media.2018.07.010. Epub 2018 Aug 4.

Abstract

Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem, constrained image sizes and model complexities can lead to unnecessary increase in computational cost and decrease in performance. As many common morphological features are usually shared by different classification tasks of an organ, it is greatly beneficial if we can extract such features to improve classification with limited samples. Therefore, inspired by the idea of curriculum learning, we propose a strategy for building medical image classifiers using features from segmentation networks. By using a segmentation network pre-trained on similar data as the classification task, the machine can first learn the simpler shape and structural concepts before tackling the actual classification problem which usually involves more complicated concepts. Using our proposed framework on a 3D three-class brain tumor type classification problem, we achieved 82% accuracy on 191 testing samples with 91 training samples. When applying to a 2D nine-class cardiac semantic level classification problem, we achieved 86% accuracy on 263 testing samples with 108 training samples. Comparisons with ImageNet pre-trained classifiers and classifiers trained from scratch are presented.

摘要

深度学习在医学图像分析中显示出了很有前景的结果,然而,缺乏非常大的标注数据集限制了其全部潜力。尽管使用 ImageNet 预训练分类模型进行迁移学习可以缓解这个问题,但受限的图像大小和模型复杂度可能会导致不必要的计算成本增加和性能下降。由于许多常见的形态特征通常在器官的不同分类任务中共享,如果我们能够提取这些特征来利用有限的样本进行分类,这将是非常有益的。因此,受课程学习思想的启发,我们提出了一种使用分割网络特征来构建医学图像分类器的策略。通过使用与分类任务相似数据预训练的分割网络,机器可以在解决实际分类问题之前,首先学习更简单的形状和结构概念,而实际分类问题通常涉及更复杂的概念。我们在一个 3D 三类别脑肿瘤类型分类问题上应用了所提出的框架,在 191 个测试样本中实现了 82%的准确率,而在 91 个训练样本中实现了 86%的准确率。我们还进行了与 ImageNet 预训练分类器和从头开始训练的分类器的比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验