Suppr超能文献

具有一个公因子和多组次要因子的 CFA 模型。

CFA Models with a General Factor and Multiple Sets of Secondary Factors.

机构信息

Department of Education, University of California, Los Angeles, 457 Portola Plaza, Los Angeles, CA, 90095, USA.

American Institutes for Research, Washington, USA.

出版信息

Psychometrika. 2018 Dec;83(4):785-808. doi: 10.1007/s11336-018-9633-x. Epub 2018 Aug 17.

Abstract

We propose a class of confirmatory factor analysis models that include multiple sets of secondary or specific factors and a general factor. The general factor accounts for the common variance among manifest variables, whereas multiple sets of secondary factors account for the remaining source-specific dependency among subsets of manifest variables. A special case of the model is further proposed which constrains the specific factor loadings to be proportional to the general factor loadings. This proportional model substantially reduces the number of model parameters while preserving the essential structure of the general model. Furthermore, the proportional model allows for the interpretation of latent variables as the expected values of the observed manifest variables, decomposition of the variances, and the inclusion of interactions, similar to generalizability theory. We provide two applications to illustrate the utility of the proposed class of models.

摘要

我们提出了一类验证性因子分析模型,其中包括多组次要或特定因子和一个一般因子。一般因子解释了显变量之间的共同方差,而多组次要因子则解释了显变量子集之间剩余的特定来源的依存关系。进一步提出了该模型的一个特例,其中限制特定因子的加载与一般因子的加载成比例。这种比例模型大大减少了模型参数的数量,同时保持了一般模型的基本结构。此外,比例模型允许将潜在变量解释为观察到的显变量的期望值,进行方差分解,并包括交互作用,类似于可概括性理论。我们提供了两个应用案例来说明所提出的模型类的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验