School of Computer Science, Wuhan University, Wuhan 430072, China.
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
Curr Drug Metab. 2019;20(3):194-202. doi: 10.2174/1389200219666180821094047.
The identification of drug-target interactions is a crucial issue in drug discovery. In recent years, researchers have made great efforts on the drug-target interaction predictions, and developed databases, software and computational methods.
In the paper, we review the recent advances in machine learning-based drug-target interaction prediction. First, we briefly introduce the datasets and data, and summarize features for drugs and targets which can be extracted from different data. Since drug-drug similarity and target-target similarity are important for many machine learning prediction models, we introduce how to calculate similarities based on data or features. Different machine learningbased drug-target interaction prediction methods can be proposed by using different features or information. Thus, we summarize, analyze and compare different machine learning-based prediction methods.
This study provides the guide to the development of computational methods for the drug-target interaction prediction.
药物-靶标相互作用的鉴定是药物发现中的一个关键问题。近年来,研究人员在药物-靶标相互作用预测方面做了大量工作,并开发了数据库、软件和计算方法。
在本文中,我们回顾了基于机器学习的药物-靶标相互作用预测的最新进展。首先,我们简要介绍了数据集和数据,并总结了可以从不同数据中提取的药物和靶标特征。由于药物相似性和靶标相似性对许多机器学习预测模型很重要,我们介绍了如何基于数据或特征计算相似性。不同的基于机器学习的药物-靶标相互作用预测方法可以通过使用不同的特征或信息来提出。因此,我们总结、分析和比较了不同的基于机器学习的预测方法。
本研究为药物-靶标相互作用预测的计算方法的发展提供了指导。