Suppr超能文献

在小鼠模型中,雷帕霉素通过降低mTOR信号传导挽救BMP介导的中线颅缝早闭表型。

Rapamycin rescues BMP mediated midline craniosynostosis phenotype through reduction of mTOR signaling in a mouse model.

作者信息

Kramer Kaitrin, Yang Jingwen, Swanson W Benton, Hayano Satoru, Toda Masako, Pan Haichun, Kim Jin Koo, Krebsbach Paul H, Mishina Yuji

机构信息

Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109.

Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

出版信息

Genesis. 2018 Jun;56(6-7):e23220. doi: 10.1002/dvg.23220.

Abstract

Craniosynostosis is defined as congenital premature fusion of one or more cranial sutures. While the genetic basis for about 30% of cases is known, the causative genes for the diverse presentations of the remainder of cases are unknown. The recently discovered cranial suture stem cell population affords an opportunity to identify early signaling pathways that contribute to craniosynostosis. We previously demonstrated that enhanced BMP signaling in neural crest cells (caA3 mutants) leads to premature cranial suture fusion resulting in midline craniosynostosis. Since enhanced mTOR signaling in neural crest cells leads to craniofacial bone lesions, we investigated the extent to which mTOR signaling is involved in the pathogenesis of BMP-mediated craniosynostosis by affecting the suture stem cell population. Our results demonstrate a loss of suture stem cells in the caA3 mutant mice by the newborn stage. We have found increased activation of mTOR signaling in caA3 mutant mice during embryonic stages, but not at the newborn stage. Our study demonstrated that inhibition of mTOR signaling via rapamycin in a time specific manner partially rescued the loss of the suture stem cell population. This study provides insight into how enhanced BMP signaling regulates suture stem cells via mTOR activation.

摘要

颅缝早闭被定义为一条或多条颅缝的先天性过早融合。虽然约30%的病例的遗传基础已为人所知,但其余病例各种表现形式的致病基因尚不清楚。最近发现的颅缝干细胞群为确定导致颅缝早闭的早期信号通路提供了一个机会。我们之前证明,神经嵴细胞中增强的骨形态发生蛋白(BMP)信号传导(caA3突变体)会导致颅缝过早融合,从而导致中线颅缝早闭。由于神经嵴细胞中增强的雷帕霉素靶蛋白(mTOR)信号传导会导致颅面骨病变,我们研究了mTOR信号传导通过影响缝线干细胞群在BMP介导的颅缝早闭发病机制中的参与程度。我们的结果表明,在新生阶段,caA3突变小鼠的缝线干细胞缺失。我们发现,在胚胎阶段,caA3突变小鼠的mTOR信号传导激活增加,但在新生阶段没有增加。我们的研究表明,通过雷帕霉素以时间特异性方式抑制mTOR信号传导可部分挽救缝线干细胞群的缺失。这项研究深入了解了增强的BMP信号传导如何通过mTOR激活来调节缝线干细胞。

相似文献

2
3
BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.
Dev Biol. 2017 Sep 1;429(1):260-270. doi: 10.1016/j.ydbio.2017.06.020. Epub 2017 Jun 19.
5
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis.
Curr Top Dev Biol. 2015;115:131-56. doi: 10.1016/bs.ctdb.2015.07.004. Epub 2015 Oct 1.
8
Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
Dev Biol. 2012 Aug 15;368(2):283-93. doi: 10.1016/j.ydbio.2012.05.026. Epub 2012 Jun 1.

引用本文的文献

2
BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies.
Front Physiol. 2023 May 18;14:1170511. doi: 10.3389/fphys.2023.1170511. eCollection 2023.
4
The genetic overlap between osteoporosis and craniosynostosis.
Front Endocrinol (Lausanne). 2022 Sep 26;13:1020821. doi: 10.3389/fendo.2022.1020821. eCollection 2022.
5
Polycystin-1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model.
J Cell Mol Med. 2022 Apr;26(8):2428-2437. doi: 10.1111/jcmm.17266. Epub 2022 Mar 13.
7
Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate.
Biomaterials. 2021 May;272:120769. doi: 10.1016/j.biomaterials.2021.120769. Epub 2021 Mar 24.
9
A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis.
Hum Genet. 2020 Aug;139(8):1077-1090. doi: 10.1007/s00439-020-02157-z. Epub 2020 Apr 7.
10
Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis.
Int J Biol Sci. 2019 Jan 1;15(2):298-311. doi: 10.7150/ijbs.29183. eCollection 2019.

本文引用的文献

1
EGFR controls bone development by negatively regulating mTOR-signaling during osteoblast differentiation.
Cell Death Differ. 2018 Jun;25(6):1094-1106. doi: 10.1038/s41418-017-0054-7. Epub 2018 Feb 14.
2
mTOR signaling in skeletal development and disease.
Bone Res. 2018 Jan 30;6:1. doi: 10.1038/s41413-017-0004-5. eCollection 2018.
3
Neural crest emigration: From start to stop.
Genesis. 2018 Jun;56(6-7):e23090. doi: 10.1002/dvg.23090. Epub 2018 Jan 25.
4
BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.
Dev Biol. 2017 Sep 1;429(1):260-270. doi: 10.1016/j.ydbio.2017.06.020. Epub 2017 Jun 19.
5
TGF-β Family Signaling in Mesenchymal Differentiation.
Cold Spring Harb Perspect Biol. 2018 May 1;10(5):a022202. doi: 10.1101/cshperspect.a022202.
10
A Genetic-Pathophysiological Framework for Craniosynostosis.
Am J Hum Genet. 2015 Sep 3;97(3):359-77. doi: 10.1016/j.ajhg.2015.07.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验