Kramer Kaitrin, Yang Jingwen, Swanson W Benton, Hayano Satoru, Toda Masako, Pan Haichun, Kim Jin Koo, Krebsbach Paul H, Mishina Yuji
Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109.
Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Genesis. 2018 Jun;56(6-7):e23220. doi: 10.1002/dvg.23220.
Craniosynostosis is defined as congenital premature fusion of one or more cranial sutures. While the genetic basis for about 30% of cases is known, the causative genes for the diverse presentations of the remainder of cases are unknown. The recently discovered cranial suture stem cell population affords an opportunity to identify early signaling pathways that contribute to craniosynostosis. We previously demonstrated that enhanced BMP signaling in neural crest cells (caA3 mutants) leads to premature cranial suture fusion resulting in midline craniosynostosis. Since enhanced mTOR signaling in neural crest cells leads to craniofacial bone lesions, we investigated the extent to which mTOR signaling is involved in the pathogenesis of BMP-mediated craniosynostosis by affecting the suture stem cell population. Our results demonstrate a loss of suture stem cells in the caA3 mutant mice by the newborn stage. We have found increased activation of mTOR signaling in caA3 mutant mice during embryonic stages, but not at the newborn stage. Our study demonstrated that inhibition of mTOR signaling via rapamycin in a time specific manner partially rescued the loss of the suture stem cell population. This study provides insight into how enhanced BMP signaling regulates suture stem cells via mTOR activation.
颅缝早闭被定义为一条或多条颅缝的先天性过早融合。虽然约30%的病例的遗传基础已为人所知,但其余病例各种表现形式的致病基因尚不清楚。最近发现的颅缝干细胞群为确定导致颅缝早闭的早期信号通路提供了一个机会。我们之前证明,神经嵴细胞中增强的骨形态发生蛋白(BMP)信号传导(caA3突变体)会导致颅缝过早融合,从而导致中线颅缝早闭。由于神经嵴细胞中增强的雷帕霉素靶蛋白(mTOR)信号传导会导致颅面骨病变,我们研究了mTOR信号传导通过影响缝线干细胞群在BMP介导的颅缝早闭发病机制中的参与程度。我们的结果表明,在新生阶段,caA3突变小鼠的缝线干细胞缺失。我们发现,在胚胎阶段,caA3突变小鼠的mTOR信号传导激活增加,但在新生阶段没有增加。我们的研究表明,通过雷帕霉素以时间特异性方式抑制mTOR信号传导可部分挽救缝线干细胞群的缺失。这项研究深入了解了增强的BMP信号传导如何通过mTOR激活来调节缝线干细胞。