Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
Nanotechnology. 2018 Oct 26;29(43):43LT02. doi: 10.1088/1361-6528/aad9bf. Epub 2018 Aug 28.
Nanopillar arrays that are bactericidal but not cytotoxic against the host cells could be used in implantable medical devices to prevent implant-associated infections. It is, however, unclear what heights, widths, interspacing, and shape should be used for the nanopillars to achieve the desired antibacterial effects while not hampering the integration of the device in the body. Here, we present an in-silico approach based on finite element modeling of the interactions between Staphylococcus aureus and nanopatterns on the one hand and osteoblasts and nanopatterns on the other hand to find the best design parameters. We found that while the height of the nanopillars seems to have little impact on the bactericidal behavior, shorter widths and larger interspacings substantially increase the bactericidal effects. The same combination of parameters could, however, also cause cytotoxicity. Our results suggest that a specific combination of height (120 nm), width (50 nm), and interspacing (300 nm) offers the bactericidal effects without cytotoxicity.
纳米柱阵列具有杀菌作用而不损伤宿主细胞,可以用于可植入医疗设备中,以预防植入物相关感染。然而,目前尚不清楚纳米柱的高度、宽度、间隔和形状应该如何设计,才能在不影响设备在体内整合的情况下达到理想的抗菌效果。在这里,我们提出了一种基于有限元模型的计算方法,用于模拟金黄色葡萄球菌与纳米图案之间的相互作用,以及成骨细胞与纳米图案之间的相互作用,以找到最佳的设计参数。我们发现,虽然纳米柱的高度似乎对杀菌行为影响不大,但较短的宽度和较大的间隔会显著增强杀菌效果。然而,相同的参数组合也可能导致细胞毒性。我们的结果表明,特定的高度(120nm)、宽度(50nm)和间隔(300nm)组合可以在不产生细胞毒性的情况下实现杀菌效果。