Blázquez E, Rodríguez C, Ródenas J, Pérez de Rozas A, Campbell J M, Segalés J, Pujols J, Polo J
APC EUROPE, S.L.U. Avda, Granollers, Spain.
IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
Lett Appl Microbiol. 2018 Nov;67(5):442-448. doi: 10.1111/lam.13068. Epub 2018 Sep 19.
The objectives of this study were to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system and the spray-drying method as two independent safety steps on inactivation of Escherichia coli K88 and K99 spiked in porcine plasma at 6·46 ± 0·04 log ml and 6·78 ± 0·67 log ml respectively for UV-C method, and at 7·31 ± 0·39 log ml and 7·66 ± 0·11 log ml , respectively for the spray-drying method. The UV-C method was performed at different UV light doses (from 750 to 9000 J l ) using a pilot plant UV-C device working under turbulent flow. Spray-drying treatment was done at inlet temperature 220 ± 1°C and two different outlet temperatures, 80 ± 1°C or 70 ± 1°C. Results indicated that UV-C treatment induced a 4 log viability reduction for both E. coli at 3000 J l . Full inactivation of both E. coli strains was achieved in all spray-dried samples dehydrated at both outlet temperatures. The special UV-C system design for turbid liquid porcine plasma is a novel treatment that can provide an additional redundant biosafety feature that can be incorporated into the manufacturing process for spray-dried animal plasma.
The safety of raw materials from animal origin such as spray-dried porcine plasma (SDPP) may be a concern for the swine industry. Ultraviolet treatment at 254 nm (UV-C) of liquid plasma has been proposed as an additional biosafety feature in the manufacturing process of SDPP. We found that UV-C exposure in the liquid plasma at 3000 J l reduces about 4 log10 ml for E. coli K88 and K99. Full inactivation of both E. coli strains was achieved in all spray-dried samples. The incorporation of UV-C treatment to liquid plasma improves the robustness of the SDPP manufacturing process.
本研究的目的是评估紫外线(UV-C,254纳米)照射系统和喷雾干燥法作为两个独立的安全步骤,对分别以6.46±0.04 log CFU/ml和6.78±0.67 log CFU/ml接种于猪血浆中的大肠杆菌K88和K99的灭活效果,UV-C法中猪血浆初始菌量分别为上述浓度,喷雾干燥法中猪血浆初始菌量分别为7.31±0.39 log CFU/ml和7.66±0.11 log CFU/ml。UV-C法使用在湍流条件下工作的中试规模UV-C设备,在不同紫外线剂量(750至9000 J/l)下进行。喷雾干燥处理在入口温度220±1°C和两个不同的出口温度80±1°C或70±1°C下进行。结果表明,UV-C处理在3000 J/l时使两种大肠杆菌的存活率降低4个对数级。在两个出口温度下脱水的所有喷雾干燥样品中,两种大肠杆菌菌株均实现了完全灭活。针对浑浊液体猪血浆的特殊UV-C系统设计是一种新型处理方法,可提供额外的冗余生物安全特性,可纳入喷雾干燥动物血浆的制造过程。
动物源性原材料如喷雾干燥猪血浆(SDPP)的安全性可能是养猪行业关注的问题。已提出在SDPP制造过程中对液体血浆进行254纳米(UV-C)紫外线处理作为额外的生物安全特性。我们发现,在3000 J/l的液体血浆中进行UV-C照射可使大肠杆菌K88和K99的菌量减少约4 log10 CFU/ml。所有喷雾干燥样品中两种大肠杆菌菌株均实现了完全灭活。将UV-C处理纳入液体血浆可提高SDPP制造过程的稳健性。