Zhao Boya, Jin Shi-Feng, Huang Sheng, Liu Ning, Ma Jing-Yuan, Xue Ding-Jiang, Han Qiwei, Ding Jie, Ge Qian-Qing, Feng Yaqing, Hu Jin-Song
National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.
School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China.
J Am Chem Soc. 2018 Sep 19;140(37):11716-11725. doi: 10.1021/jacs.8b06050. Epub 2018 Sep 11.
All-inorganic lead halide perovskites demonstrate improved thermal stability over the organic-inorganic halide perovskites, but the cubic α-CsPbI with the most appropriate bandgap for light harvesting is not structurally stable at room temperature and spontaneously transforms into the undesired orthorhombic δ-CsPbI. Here, we present a new member of black-phase thin films of all-inorganic perovskites for high-efficiency photovoltaics, the orthorhombic γ-CsPbI thin films with intrinsic thermodynamic stability and ideal electronic structure. Exempt from introducing organic ligands or incorporating mixed cations/anions into the crystal lattice, we stabilize the γ-CsPbI thin films by a simple solution process in which a small amount of HO manipulates the size-dependent phase formation through a proton transfer reaction. Theoretical calculations coupled with experiments show that γ-CsPbI with a lower surface free energy becomes thermodynamically preferred over δ-CsPbI at surface areas greater than 8600 m/mol and exhibits comparable optoelectronic properties to α-CsPbI. Consequently, γ-CsPbI-based solar cells display a highly reproducible efficiency of 11.3%, among the highest records for CsPbI thin-film solar cells, with robust stability in ambient atmosphere for months and continuous operating conditions for hours. Our study provides a novel and fundamental perspective to overcome the Achilles' heel of the inorganic lead iodide perovskite and opens it up for high-performance optoelectronic devices.
全无机铅卤化物钙钛矿比有机-无机卤化物钙钛矿具有更高的热稳定性,但具有最适合光捕获带隙的立方α-CsPbI在室温下结构不稳定,会自发转变为不理想的正交δ-CsPbI。在此,我们展示了一种用于高效光伏的全无机钙钛矿黑相薄膜的新成员,即具有固有热力学稳定性和理想电子结构的正交γ-CsPbI薄膜。无需引入有机配体或将混合阳离子/阴离子掺入晶格,我们通过一种简单的溶液法稳定γ-CsPbI薄膜,在该方法中,少量的HO通过质子转移反应控制尺寸依赖性相形成。理论计算与实验表明,在表面积大于8600 m/mol时,具有较低表面自由能的γ-CsPbI在热力学上比δ-CsPbI更受青睐,并且表现出与α-CsPbI相当的光电特性。因此,基于γ-CsPbI的太阳能电池具有11.3%的高度可重复效率,是CsPbI薄膜太阳能电池的最高记录之一,在环境大气中具有数月的稳健稳定性和数小时的连续工作条件。我们的研究为克服无机碘化铅钙钛矿的致命弱点提供了一种新颖而基本的视角,并为高性能光电器件开辟了道路。