Heuslein Joshua L, Gorick Catherine M, McDonnell Stephanie P, Song Ji, Annex Brian H, Price Richard J
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
Mol Ther Nucleic Acids. 2018 Sep 7;12:829-844. doi: 10.1016/j.omtn.2018.08.001. Epub 2018 Aug 8.
Arteriogenesis, the growth of endogenous collateral arteries bypassing arterial occlusion(s), is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease (PAD). Nonetheless, endothelial mechano-signaling during arteriogenesis is incompletely understood. Here we tested the hypothesis that a mechanosensitive microRNA, miR-199a-5p, regulates perfusion recovery and collateral arteriogenesis following femoral arterial ligation (FAL) via control of monocyte recruitment and pro-arteriogenic gene expression. We have previously shown that collateral artery segments exhibit distinctly amplified arteriogenesis if they are exposed to reversed flow following FAL in the mouse. We performed a genome-wide analysis of endothelial cells exposed to a biomimetic reversed flow waveform. From this analysis, we identified mechanosensitive miR-199a-5p as a novel candidate regulator of collateral arteriogenesis. In vitro, miR-199a-5p inhibited pro-arteriogenic gene expression (IKKβ, Cav1) and monocyte adhesion to endothelium. In vivo, following FAL in mice, miR-199a-5p overexpression impaired foot perfusion and arteriogenesis. In contrast, a single intramuscular anti-miR-199a-5p injection elicited a robust therapeutic response, including complete foot perfusion recovery, markedly augmented arteriogenesis (>3.4-fold increase in segment conductance), and improved gastrocnemius tissue composition. Finally, we found plasma miR-199a-5p to be elevated in human PAD patients with intermittent claudication compared to a risk factor control population. Through our transformative analysis of endothelial mechano-signaling in response to a biomimetic amplified arteriogenesis flow waveform, we have identified miR-199a-5p as both a potent regulator of arteriogenesis and a putative target for treating PAD.
动脉生成,即绕过动脉闭塞处生长内源性侧支动脉,是一种由剪切应力诱导的基本适应性反应,对治疗外周动脉疾病(PAD)具有重要意义。然而,动脉生成过程中的内皮机械信号传导仍未完全明确。在此,我们验证了一个假设,即机械敏感的微小RNA,miR-199a-5p,通过控制单核细胞募集和促动脉生成基因表达,调节股动脉结扎(FAL)后灌注恢复和侧支动脉生成。我们之前已经表明,如果小鼠在FAL后暴露于反向血流,侧支动脉段会表现出明显增强的动脉生成。我们对暴露于仿生反向血流波形的内皮细胞进行了全基因组分析。通过该分析,我们确定机械敏感的miR-199a-5p是侧支动脉生成的新型候选调节因子。在体外,miR-199a-5p抑制促动脉生成基因表达(IKKβ、Cav1)以及单核细胞与内皮的黏附。在体内,小鼠FAL后,miR-199a-5p过表达损害足部灌注和动脉生成。相反,单次肌内注射抗miR-199a-5p引发了强烈的治疗反应,包括足部灌注完全恢复、动脉生成显著增强(节段传导增加>3.4倍)以及腓肠肌组织组成改善。最后,我们发现与风险因素对照人群相比,间歇性跛行的人类PAD患者血浆miR-199a-5p升高。通过我们对响应仿生增强动脉生成血流波形的内皮机械信号传导的转化分析,我们确定miR-199a-5p既是动脉生成的有效调节因子,也是治疗PAD的潜在靶点。