Suppr超能文献

哺乳动物外侧膝状核中视网膜膝状体传递的控制

The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.

作者信息

Sherman S M, Koch C

出版信息

Exp Brain Res. 1986;63(1):1-20. doi: 10.1007/BF00235642.

Abstract

In the mammalian visual system, the lateral geniculate nucleus is commonly thought to act merely as a relay for the transmission of visual information from the retina to the visual cortex, a relay without significant elaboration in receptive field properties or signal strength. However, many morphological and electrophysiological observations are at odds with this view. Only 10-20% of the synapses found on geniculate relay neurons are retinal in origin. Roughly half of all synapses derive from cells in layer VI of visual cortex; roughly one third are inhibitory and GABAergic, derived either from interneurons or from cells of the nearby perigeniculate nucleus. Most of the remaining synapses probably derive from cholinergic, noradrenergic, and serotonergic sites within the brainstem reticular formation. Moreover, recent biophysical studies have revealed several ionic currents present in virtually all thalamic neurons. One is a Ca2+-dependent K+ current underlying the afterhyperpolarization (or the IAHP), which may last up to 100-200 ms following an action potential. Activation of the IAHP leads to spike frequency adaptation in response to a sustained, suprathreshold input. Intracellular recordings from other neuronal preparations have shown that the IAHP can be blocked by noradrenaline or acetylcholine, leading to an increased cellular excitability. Another ionic current results from a voltage- and time-dependent Ca2+ conductance that produces a low threshold spike. Activation of this conductance transforms a geniculate neuron from a state of faithful relay of information to one of bursting behavior that bears little relationship to the activity of its retinal afferents. We propose that state-dependent gating of geniculate relay cells, which may represent part of the neuronal substrate involved in certain forms of selective visual attention, can be effected through at least three different mechanisms: conventional GABAergic inhibition, which is largely controlled via brainstem and cortical afferents through interneurons and perigeniculate cells; the IAHP, which is controlled via noradrenergic and cholinergic afferents from the brainstem reticular formation; and the low threshold spike, which may be controlled by GABAergic inputs, cholinergic inputs, and/or the corticogeniculate input, although other possibilities also exist. Furthermore, it seems likely that gating functions involving the corticogeniculate pathway are suited to attentional processes within the visual domain (e.g., saccadic suppression), whereas brainstem inputs seem more likely to have more global effects that switch attention between sensory systems.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

在哺乳动物视觉系统中,外侧膝状体核通常被认为仅仅是视觉信息从视网膜传输到视觉皮层的中继站,一个在感受野特性或信号强度方面没有显著精细加工的中继站。然而,许多形态学和电生理学观察结果与这一观点不一致。在膝状体中继神经元上发现的突触中,只有10% - 20%起源于视网膜。所有突触中大约一半来自视觉皮层第VI层的细胞;大约三分之一是抑制性的且为GABA能,要么来自中间神经元,要么来自附近的外侧膝状体旁核的细胞。其余大部分突触可能来自脑干网状结构中的胆碱能、去甲肾上腺素能和5 - 羟色胺能位点。此外,最近的生物物理学研究揭示了几乎所有丘脑神经元中都存在的几种离子电流。一种是动作电位后超极化(或IAHP)所依赖的Ca2 +依赖性K +电流,它在动作电位后可能持续长达100 - 200毫秒。IAHP的激活会导致对持续的阈上输入产生放电频率适应。来自其他神经元标本的细胞内记录表明,IAHP可被去甲肾上腺素或乙酰胆碱阻断,从而导致细胞兴奋性增加。另一种离子电流来自电压和时间依赖性的Ca2 +电导,它会产生一个低阈值尖峰。这种电导的激活会将膝状体神经元从忠实地中继信息的状态转变为一种爆发性行为状态,这种状态与它的视网膜传入神经的活动几乎没有关系。我们提出,膝状体中继细胞的状态依赖性门控可能代表了参与某些形式选择性视觉注意的神经元基质的一部分,它可以通过至少三种不同机制实现:传统的GABA能抑制,它主要通过脑干和皮层传入神经经中间神经元和外侧膝状体旁核细胞进行控制;IAHP,它由脑干网状结构的去甲肾上腺素能和胆碱能传入神经控制;以及低阈值尖峰,它可能由GABA能输入、胆碱能输入和/或皮层膝状体输入控制,尽管也存在其他可能性。此外,涉及皮层膝状体通路的门控功能似乎适用于视觉领域内的注意过程(例如扫视抑制),而脑干输入似乎更有可能产生更全局性的影响,从而在感觉系统之间切换注意力。(摘要截取自400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验