School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy , Wuhan University , Wuhan 430072 , P. R. China.
ACS Appl Mater Interfaces. 2018 Sep 12;10(36):30470-30478. doi: 10.1021/acsami.8b11794. Epub 2018 Aug 30.
Carbon coating is an effective method to enhance the lithium storage of metal oxides, which, however, suffers from harsh conditions in high-temperature hydrolysis of organic mass at inert atmosphere and compromised capacity due to the presence of low-capacity carbon. We herein report a direct assembly of ultrathin amorphous MnO nanosheets with thickness less than 3 nm over FeO nanospindle backbones at 95 °C as a mild-condition, short-process, and upscalable alternative to the classic carbon-coating method. The assembly of the amorphous MnO nanosheets significantly increases the electrical conductivity of FeO nanospindles. When evaluated as an anode for lithium-ion batteries, the FeO@amorphous MnO electrode shows enhanced capacity retention compared to that of the FeO nanospindle electrode. In situ transmission electron microscopy and in situ X-ray diffraction observations of the electrochemically driven lithiation/delithiation of the FeO@amorphous MnO electrode indicate that the assembled amorphous MnO nanosheets are in situ transformed into a Fe-Mn-O protection layer for better electrical conductivity, uncompromised Li penetration, and enhanced structural integration. The FeO@amorphous MnO electrode therefore has a reversible capacity of 555 mAh g after 100 galvanostatic charge/discharge cycles at 1000 mA g, comparable with that of the FeO@C electrode derived via the classic carbon-coating route.
碳涂层是一种增强金属氧化物锂存储能力的有效方法,但在惰性气氛下进行有机物质的高温水解过程中条件苛刻,并且由于存在低容量的碳,导致容量受损。在此,我们报告了一种在 95°C 下直接将厚度小于 3nm 的超薄无定形 MnO 纳米片组装到 FeO 纳米线骨架上的方法,作为经典碳涂层方法的温和条件、短流程和可扩展替代方法。无定形 MnO 纳米片的组装显著提高了 FeO 纳米线的电导率。当作为锂离子电池的阳极进行评估时,与 FeO 纳米线电极相比,FeO@无定形 MnO 电极表现出增强的容量保持率。原位透射电子显微镜和原位 X 射线衍射观察电化学驱动的 FeO@无定形 MnO 电极的锂化/脱锂过程表明,组装的无定形 MnO 纳米片原位转化为 Fe-Mn-O 保护层,以提高电导率、不影响 Li 渗透和增强结构集成。因此,FeO@无定形 MnO 电极在 1000mA g 下经过 100 次恒流充放电循环后具有 555mAh g 的可逆容量,与通过经典碳涂层路线获得的 FeO@C 电极相当。