Department of Anthropology, University of Oregon, 1218 University of Oregon, Eugene, OR 97403, USA.
Department of Anthropology, University of Oregon, 1218 University of Oregon, Eugene, OR 97403, USA.
J Hum Evol. 2018 Nov;124:40-51. doi: 10.1016/j.jhevol.2018.08.001. Epub 2018 Aug 31.
While the analysis of ontogenetic trajectories is common in geometric morphometrics (GM), the simultaneous comparison of several trajectories can be unwieldy and is, in some cases, unable to make use of one of the main advantages of GM, visualization. Furthermore, due to the paucity of the paleontological record, analyses of trajectories are often limited to extant taxa. We address these issues by presenting a method for visualizing the similarities and differences of cranial ontogenetic trajectories among taxa and a method for reconstructing ancestral ontogenetic trajectories, so that these differences can be investigated in a phylogenetic context. We also tested for the presence of phylogenetic signal in the ontogenetic trajectories themselves. Using an ontogenetic series of 522 crania, representing 17 cercopithecine species from 8 genera, we first calculated ontogenetic trajectories of cranial shape change for each species, and then entered these trajectories into a principal components analysis to produce a developmental shape-change trajectory PCA (δPCA). Then, through an augmentation of the phylomorphospace approach, we projected a molecular phylogeny onto the major axes of trajectory shape variation from the δPCA to produce an 'ontophylomorphospace,' using squared-change parsimony to reconstruct interior nodes. Through these procedures, we were able to determine that the δPCAs illustrate patterns of variation in these developmental trajectories in a visually intuitive manner that allows for easier comparisons among taxa. Through examination of the ontophylomorphospace, we found that African papionins exhibit extensive homoplasy in the evolution of cranial ontogenetic trajectories, and that Asian species of Macaca show highly derived ontogenetic trajectories relative to other cercopithecines. Additionally, we found no support for the presence of a phylogenetic signal in cranial ontogenetic trajectories. The δPCA and the ontophylomorphospace are ways in which to visualize and compare complex, multivariate shape transformations, both among extant taxa and over evolutionary time, respectively.
虽然在几何形态测量学(GM)中分析个体发育轨迹很常见,但同时比较几个轨迹可能很麻烦,而且在某些情况下无法利用 GM 的主要优势之一,即可视化。此外,由于古生物学记录的匮乏,对轨迹的分析通常仅限于现存的分类群。我们通过提出一种方法来解决这些问题,该方法用于可视化分类群之间颅部个体发育轨迹的相似性和差异性,以及重建祖先个体发育轨迹的方法,以便在系统发育背景下研究这些差异。我们还测试了个体发育轨迹本身是否存在系统发育信号。使用代表 8 个属的 17 种长尾猴科物种的 522 个头骨的个体发育系列,我们首先计算了每个物种的颅骨形状变化的个体发育轨迹,然后将这些轨迹输入主成分分析中,以产生发育形状变化轨迹 PCA(δPCA)。然后,通过扩展形态空间方法,我们将分子系统发育投影到从δPCA 得出的轨迹形状变化的主要轴上,以产生“个体发育形态空间”,使用平方变化简约法重建内部节点。通过这些程序,我们能够确定 δPCAs 以直观的方式说明这些发育轨迹中变化模式,使得更容易在分类群之间进行比较。通过检查个体发育形态空间,我们发现非洲狒狒科在颅部个体发育轨迹的进化中表现出广泛的同形现象,而亚洲的猕猴物种相对于其他长尾猴科物种表现出高度衍生的个体发育轨迹。此外,我们没有发现颅部个体发育轨迹存在系统发育信号的支持。δPCA 和个体发育形态空间分别是可视化和比较复杂的、多变量形状转换的方法,分别是在现存分类群和进化时间之间。