Suppr超能文献

一种用于非处理长期 ECG 信号的分段和心律失常检测的拓扑方法。

A topological approach to delineation and arrhythmic beats detection in unprocessed long-term ECG signals.

机构信息

Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia.

出版信息

Comput Methods Programs Biomed. 2018 Oct;164:159-168. doi: 10.1016/j.cmpb.2018.07.010. Epub 2018 Jul 21.

Abstract

BACKGROUND AND OBJECTIVE

Arrhythmias are one of the most common symptoms of cardiac failure. They are usually diagnosed using ECG recordings, particularly long ambulatory recordings (AECG). These recordings are tedious to interpret by humans due to their extent (up to 48 h) and the relative scarcity of arrhythmia events. This makes automated systems for detecting various AECG anomalies indispensable. In this work we present a novel procedure based on topological principles (Morse theory) for detecting arrhythmic beats in AECG. It works in nearly real-time (delayed by a 14 s window), and can be applied to raw (unprocessed) ECG signals.

METHODS

The procedure is based on a subject-specific adaptation of the one-dimensional discrete Morse theory (ADMT), which represents the signal as a sequence of its most important extrema. The ADMT algorithm is applied twice; for low-amplitude, high-frequency noise removal, and for detection of the characteristic waves of individual ECG beats. The waves are annotated using the ADMT algorithm and template matching. The annotated beats are then compared to the adjacent beats with two measures of similarity: the distance between two beats, and the difference in shape between them. The two measures of similarity are used as inputs to a decision tree algorithm that classifies the beats as normal or abnormal. The classification performance is evaluated with the leave-one-record-out cross-validation method.

RESULTS

Our approach was tested on the MIT-BIH database, where it exhibited a classification accuracy of 92.73%, a sensitivity of 73.35%, a specificity of 96.70%, a positive predictive value of 88.01%, and a negative predictive value of 95.73%.

CONCLUSIONS

Compared to related studies, our algorithm requires less preprocessing while retaining the capability to detect and classify beats in almost real-time. The algorithm exhibits a high degree of accuracy in beats detection and classification that are at least comparable to state-of-the-art methods.

摘要

背景与目的

心律失常是心力衰竭最常见的症状之一。通常使用心电图记录(尤其是长时间动态心电图记录,AECG)来诊断心律失常。由于这些记录的范围(长达 48 小时)和心律失常事件的相对稀少,人类解释这些记录非常繁琐。这使得用于检测各种 AECG 异常的自动系统变得不可或缺。在这项工作中,我们提出了一种基于拓扑原理(Morse 理论)的新方法,用于检测 AECG 中的心律失常。它几乎可以实时工作(延迟 14 秒窗口),并且可以应用于原始(未处理)的心电图信号。

方法

该过程基于对一维离散 Morse 理论(ADMT)的特定于对象的适应,该理论将信号表示为其最重要极值的序列。ADMT 算法应用两次;一次用于去除低幅度、高频噪声,另一次用于检测单个 ECG 节拍的特征波。使用 ADMT 算法和模板匹配对波进行注释。然后,将注释的节拍与相邻的节拍进行比较,使用两个相似性度量:两个节拍之间的距离和它们之间形状的差异。将这两个相似性度量用作决策树算法的输入,该算法将节拍分类为正常或异常。使用记录留一交叉验证方法评估分类性能。

结果

我们的方法在 MIT-BIH 数据库中进行了测试,其分类准确率为 92.73%,灵敏度为 73.35%,特异性为 96.70%,阳性预测值为 88.01%,阴性预测值为 95.73%。

结论

与相关研究相比,我们的算法在保留几乎实时检测和分类节拍的能力的同时,需要的预处理更少。该算法在节拍检测和分类方面具有很高的准确性,至少与最先进的方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验