Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, Republic of China.
Nanoscale. 2018 Sep 27;10(37):17699-17704. doi: 10.1039/c8nr06095a.
Highly efficient and stable semi-transparent CH3NH3PbI3 perovskite photovoltaic cells are realized by using an ITO/MoOx bilayer conductive oxide as the anode electrode with a cyclopenta[2,1-b;3,4-b']dithiophene (CT) based hole-transport material (HTM), which allows bifacial illumination from both sides of the electrodes. The wide bandgap MoOx thin film is not only to be an electron blocking layer, but also to be a passivation layer which can withstand the excessive energy bombardment during the magnetron sputtering process for the deposition of a high-quality ITO thin film. Atomic-force microscopy images, transmittance spectra and water-droplet contact angle images show that the interfacial contact between MoOx and hole transport layer (HTL) strongly influences the short-circuit current density (JSC) and fill factor (FF). The highest power conversion efficiency (PCE) values for the bifacial perovskite solar cells (0.16 cm2) and modules (11.7 cm2) are 16.38% and 14.96%, respectively. In addition, the PCE of the ITO/MoOx/CT-HTM based perovskite solar module decreases slowly toward a stable value (∼11%) for more than 700 h under wet environment conditions (70 ± 5 RH%).
通过使用 ITO/MoOx 双层导电氧化物作为阳极电极,并采用基于环戊[2,1-b;3,4-b']二噻吩 (CT) 的空穴传输材料 (HTM),实现了高效稳定的半透明 CH3NH3PbI3 钙钛矿光伏电池,允许从电极两侧进行双面照射。宽带隙 MoOx 薄膜不仅用作电子阻挡层,而且还用作可以承受磁控溅射过程中沉积高质量 ITO 薄膜时过度能量轰击的钝化层。原子力显微镜图像、透过率谱和水滴接触角图像表明,MoOx 和空穴传输层 (HTL) 之间的界面接触强烈影响短路电流密度 (JSC) 和填充因子 (FF)。双面钙钛矿太阳能电池(0.16 cm2)和模块(11.7 cm2)的最高功率转换效率(PCE)分别为 16.38%和 14.96%。此外,在湿环境条件下(70 ± 5 RH%)超过 700 h 后,基于 ITO/MoOx/CT-HTM 的钙钛矿太阳能模块的 PCE 缓慢下降并稳定在约 11%。