Suppr超能文献

基于全卷积网络的自动化心血管磁共振图像分析。

Automated cardiovascular magnetic resonance image analysis with fully convolutional networks.

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.

NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, UK.

出版信息

J Cardiovasc Magn Reson. 2018 Sep 14;20(1):65. doi: 10.1186/s12968-018-0471-x.

Abstract

BACKGROUND

Cardiovascular resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images.

METHODS

Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV).

RESULTS

By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement is 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric is 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability.

CONCLUSIONS

We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.

摘要

背景

心血管磁共振(CMR)成像技术是评估心血管疾病(CVD)的标准影像学方法,CVD 是全球范围内的主要致死原因。CMR 可准确量化心脏腔室容积、射血分数和心肌质量,为 CVD 的诊断和监测提供信息。然而,多年来,临床医生一直依赖于 CMR 图像分析的手动方法,这种方法既耗时又容易产生主观误差。从 CMR 图像中自动提取定量的和临床相关的信息是一个主要的临床挑战。

方法

深度神经网络在各种任务的图像模式识别和分割方面表现出了巨大的潜力。在这里,我们展示了一种基于全卷积网络(FCN)的 CMR 图像自动分析方法。该网络是在一个来自英国生物银行的大型数据集上进行训练和评估的,该数据集包含 4875 名受试者的 93500 张像素级标注图像。该方法的性能通过多种技术指标进行了评估,包括 Dice 度量、平均轮廓距离和 Hausdorff 距离,以及临床相关的测量指标,包括左心室(LV)舒张末期容积(LVEDV)和收缩末期容积(LVESV)、左心室质量(LVM);右心室(RV)舒张末期容积(RVEDV)和收缩末期容积(RVESV)。

结果

通过将 FCN 与大型标注数据集相结合,所提出的自动方法在分割短轴 CMR 图像上的 LV 和 RV 以及长轴 CMR 图像上的左心房(LA)和右心房(RA)方面取得了很高的性能。在 600 名受试者的短轴图像测试集中,LV 腔的平均 Dice 度量为 0.94,LV 心肌为 0.88,RV 腔为 0.90。自动测量与手动测量之间的平均绝对差值为 LVEDV 为 6.1mL,LVESV 为 5.3mL,LVM 为 6.9 克,RVEDV 为 8.5mL,RVESV 为 7.2mL。在长轴图像测试集中,LA 腔(两腔视图)的平均 Dice 度量为 0.93,LA 腔(四腔视图)为 0.95,RA 腔(四腔视图)为 0.96。其性能与人类观察者间的变异性相当。

结论

我们表明,自动方法在分析 CMR 图像和提取临床相关测量指标方面的性能可与人类专家相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验