Management Department.
Kenan-Flagler Business School, The University of North Carolina at Chapel Hill.
J Appl Psychol. 2019 Feb;104(2):293-302. doi: 10.1037/apl0000349. Epub 2018 Sep 17.
The ability to detect differences between groups partially impacts how useful a group-level variable will be for subsequent analyses. Direct consensus and referent-shift consensus group-level constructs are often measured by aggregating group member responses to multi-item scales. We show that current measurement validation practice for these group-level constructs may not be optimized with respect to differentiating groups. More specifically, a 10-year review of multilevel articles in top journals reveals that multilevel measurement validation primarily relies on procedures designed for individual-level constructs. These procedures likely miss important information about how well each specific scale item differentiates between groups. We propose that group-level measurement validation be augmented with information about each scale item's ability to differentiate groups. Using previously published datasets, we demonstrate how ICC(1) estimates for each item of a scale provide unique information and can produce group-level scales with higher ICC(1) values that enhance predictive validity. We recommend that researchers supplement conventional measurement validation information with information about item-level ICC(1) values when developing or modifying scales to assess group-level constructs. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
检测群体间差异的能力部分影响群体变量在后续分析中的有用性。直接共识和参照转移共识的群体水平结构通常通过汇总群体成员对多项量表的反应来衡量。我们表明,目前这些群体水平结构的测量验证实践可能没有针对群体差异进行优化。具体来说,对顶级期刊中多层次文章的 10 年回顾表明,多层次测量验证主要依赖于为个体水平结构设计的程序。这些程序可能会错过有关每个特定量表项目在群体之间区分能力的重要信息。我们建议在群体水平的测量验证中增加关于每个量表项目区分群体能力的信息。我们使用以前发表的数据集演示了如何为每个量表项目的 ICC(1)估计提供独特的信息,并可以生成具有更高 ICC(1)值的群体水平量表,从而提高预测有效性。我们建议研究人员在开发或修改用于评估群体水平结构的量表时,在常规测量验证信息之外补充关于项目水平 ICC(1)值的信息。