School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, Shaanxi, PR China.
Nanoscale. 2018 Nov 15;10(44):20565-20577. doi: 10.1039/c8nr03507e.
A series of molecular dynamics simulations on silver penta-twinned nanowires are performed to reveal the tensile failure mechanisms that are responsible for the different failure modes and morphologies of fracture surfaces observed in various experimental reports. The simulations show that a ductile-to-brittle transition in failure mode occurs with increasing length of the nanowires. Short nanowires have ductile-like plasticity with flat-like fracture surfaces, while long nanowires show brittle-like fractures with cone-like failure surfaces. These two seemingly counterintuitive scenarios can be attributed to two sets of mechanisms: (1) stable dislocation nucleation-controlled incipient plasticity followed by stable dislocation motion-mediated plasticity assisted by pores for short nanowires, (2) unstable dislocation nucleation-controlled incipient plasticity followed by rapid necking for long nanowires. These two sets of failure mechanisms are distinguished by fitted lines using phased strain data. We propose a general strategy to build a necking-based model for predicting the critical nanowire aspect ratio while distinguishing the fracture modes. A mechanism map of silver penta-twinned nanowire is constructed to delineate the predominant failure behaviours. Our findings reveal a correlation between the failure mode and the resulting morphology of the fracture surface and provide a paradigm for the design and engineering of mechanical properties of nanowires.
我们对银五孪晶纳米线进行了一系列分子动力学模拟,以揭示导致不同实验报告中观察到的不同失效模式和断裂表面形貌的拉伸失效机制。模拟表明,随着纳米线长度的增加,失效模式发生了从韧性到脆性的转变。短纳米线具有类似延性的塑性,断裂表面呈平坦状,而长纳米线则表现出类似脆性的断裂,断裂表面呈锥形。这两种看似矛盾的情况可以归因于两组机制:(1)稳定位错成核控制的初始塑性,随后是稳定位错运动介导的塑性,同时伴有孔隙辅助,适用于短纳米线;(2)不稳定位错成核控制的初始塑性,随后是长纳米线的快速颈缩。这两组失效机制可以通过相应变数据的拟合线来区分。我们提出了一种基于颈缩的一般策略,用于建立预测临界纳米线纵横比的模型,同时区分断裂模式。构建了银五孪晶纳米线的失效机制图,以描绘主要的失效行为。我们的研究结果揭示了失效模式与断裂表面形貌之间的相关性,并为纳米线力学性能的设计和工程提供了范例。