Department of Electrical Engineering, University of Washington, Seattle, Washington, USA.
Bonde Artificial Heart Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA.
J Heart Lung Transplant. 2018 Dec;37(12):1467-1474. doi: 10.1016/j.healun.2018.08.007. Epub 2018 Aug 11.
Models of power delivery within an intact organism have been limited to ionizing radiation and, to some extent, sound and magnetic waves for diagnostic purposes. Traditional electrical power delivery within the intact human body relies on implanted batteries that limit the amount and duration of delivered power. The efficiency of current battery technology limits the substantial demands required, such as continuous operation of an implantable artificial heart pump within a human body.
The fully implantable, miniaturized, Free-range Resonant Electrical Energy Delivery (FREE-D) system, compatible with any type of ventricular assist device (VAD), has been tested in a swine model (HVAD) for up to 3 hours. Key features of the system, the use of high-quality factor (Q) resonators together with an automatic tuning scheme, were tested over an extended operating range. Temperature changes of implanted components were measured to address safety and regulatory concerns of the FREE-D system in terms of specific absorption rate (SAR).
Dynamic power delivery using the adaptive tuning technique kept the system operating at maximum efficiency, dramatically increasing the wireless power transfer within a 1-meter diameter. Temperature rise in the FREE-D system never exceeded the maximum allowable temperature deviation of 2°C (but remained below body temperature) for an implanted device within the trunk of the body at 10 cm (25% efficiency) and 50 cm (20% efficiency), with no failure episodes.
The large operating range of FREE-D system extends the use of VAD for nearly all patients without being affected by the depth of the implanted pump. Our in-vivo results with the FREE-D system may offer a new perspective on quality of life for patients supported by implanted device.
在完整的生物体中,功率传递模型仅限于电离辐射,在某种程度上还包括用于诊断目的的声波和磁场。传统的完整人体内部电力传输依赖于植入电池,这限制了传输功率的数量和持续时间。当前电池技术的效率限制了所需的大量需求,例如在人体内持续运行植入式人工心脏泵。
完全可植入的、微型化的、自由范围谐振电能传输(FREE-D)系统与任何类型的心室辅助装置(VAD)兼容,已在猪模型(HVAD)中进行了长达 3 小时的测试。该系统的关键特点是使用高品质因数(Q)谐振器和自动调谐方案,在扩展的工作范围内进行了测试。测量植入部件的温度变化,以解决 FREE-D 系统在特定吸收率(SAR)方面的安全性和监管问题。
使用自适应调谐技术的动态功率传输使系统保持在最高效率下运行,在 1 米直径范围内显著增加了无线功率传输。FREE-D 系统的温度升高从未超过身体躯干中植入设备的最大允许温度偏差 2°C(但仍低于体温),在 10 厘米(25%效率)和 50 厘米(20%效率)处,效率分别为 25%和 20%,没有失效事件。
FREE-D 系统的大工作范围扩展了 VAD 的使用范围,几乎适用于所有患者,而不受植入泵深度的影响。我们在 FREE-D 系统中的体内结果可能为植入设备支持的患者的生活质量提供了新的视角。