Suppr超能文献

双聚类算法在中国药物不良反应监测系统中的应用。

Application of biclustering algorithm in adverse drug reaction monitoring system of China.

作者信息

Zhu Tiantian, Zhang Yuan, Ye Xiaofei, Hou Yongfang, Liu Jia, Shi Wentao, Xu Jinfang, Guo Xiaojing, He Jia

机构信息

Department of Health Statistics, Second Military Medical University, Shanghai, China.

General Hospital of Jinan Military Command, Jinan, Shandong, China.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Nov;27(11):1257-1264. doi: 10.1002/pds.4661. Epub 2018 Sep 19.

Abstract

PURPOSE

Signal evaluation is considered to be a tedious process owing to the large number of disproportional signals detected. This study aimed to apply a biclustering algorithm in the spontaneous reporting system of China and to obtain the optimal parameters. The biclustering algorithm is expected to improve the efficiency of signal evaluation by identifying similar signal groups.

METHODS

Information component (IC) was the method used for disproportionality analysis. By using IC thresholds of various strengths (0.05-4.00), the original quantitative data matrix was transformed into 80 different binary data matrices, where each cell contained either a 1 or 0. The biclustering results were obtained using a total of 720 Bimax algorithm parameters (minimal number of columns and rows was 3, 4, or 5). Next, the optimal parameters were determined through the comprehensive evaluation of the rank sum ration. Finally, we examined the biclustering results under the optimal parameters and evaluated the effect of biclustering analysis on adverse drug reaction (ADR) data in China.

RESULTS

The optimal strength of the IC threshold was 0.80, and the minimum number of rows and columns was 3. After taxonomic evaluation, we also found that 1836 biclusters (42.8%) contained similar drugs or similar ADRs, which accounted for 72.3% of signals unevaluated.

CONCLUSIONS

Applying biclustering analysis in spontaneous reporting system could provide support in confirming unrecognized ADRs, identifying rare ADRs, and screening drug-ADR pairs, which need more attention. Biclustering algorithm could improve the efficiency of signal detection and evaluation in China.

摘要

目的

由于检测到的不成比例信号数量众多,信号评估被认为是一个繁琐的过程。本研究旨在将双聚类算法应用于中国的自发报告系统并获得最优参数。预计双聚类算法可通过识别相似信号组来提高信号评估效率。

方法

信息成分(IC)是用于不成比例分析的方法。通过使用不同强度(0.05 - 4.00)的IC阈值,将原始定量数据矩阵转换为80个不同的二进制数据矩阵,其中每个单元格包含1或0。使用总共720个Bimax算法参数(列和行的最小数量为3、4或5)获得双聚类结果。接下来,通过秩和比的综合评估确定最优参数。最后,我们检查了最优参数下的双聚类结果,并评估了双聚类分析对中国药品不良反应(ADR)数据的影响。

结果

IC阈值的最优强度为0.80,行和列的最小数量为3。经过分类评估,我们还发现1836个双聚类(42.8%)包含相似药物或相似ADR,占未评估信号的72.3%。

结论

在自发报告系统中应用双聚类分析可为确认未识别的ADR、识别罕见ADR以及筛选需要更多关注的药物 - ADR对提供支持。双聚类算法可提高中国信号检测和评估的效率。

相似文献

1
Application of biclustering algorithm in adverse drug reaction monitoring system of China.
Pharmacoepidemiol Drug Saf. 2018 Nov;27(11):1257-1264. doi: 10.1002/pds.4661. Epub 2018 Sep 19.
2
Exploration of statistical shrinkage parameters of disproportionality methods in spontaneous reporting system of China.
Pharmacoepidemiol Drug Saf. 2015 Sep;24(9):962-70. doi: 10.1002/pds.3811. Epub 2015 Jun 11.
3
A prediction model-based algorithm for computer-assisted database screening of adverse drug reactions in the Netherlands.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):199-205. doi: 10.1002/pds.4364. Epub 2017 Dec 21.
4
A comparison of disproportionality analysis methods in national adverse drug reaction databases of China.
Expert Opin Drug Saf. 2014 Jul;13(7):853-7. doi: 10.1517/14740338.2014.915938. Epub 2014 Jun 11.
5
Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases.
Pharmacoepidemiol Drug Saf. 2014 Feb;23(2):195-207. doi: 10.1002/pds.3529. Epub 2013 Nov 15.
6
Pharmacoepidemiological characterization of drug-induced adverse reaction clusters towards understanding of their mechanisms.
Comput Biol Chem. 2014 Jun;50:50-9. doi: 10.1016/j.compbiolchem.2014.01.006. Epub 2014 Jan 24.
7
Significance of data mining in routine signal detection: Analysis based on the safety signals identified by the FDA.
Pharmacoepidemiol Drug Saf. 2018 Dec;27(12):1402-1408. doi: 10.1002/pds.4672. Epub 2018 Oct 15.
8
Automatic detection of adverse events to predict drug label changes using text and data mining techniques.
Pharmacoepidemiol Drug Saf. 2013 Nov;22(11):1189-94. doi: 10.1002/pds.3493. Epub 2013 Aug 12.

引用本文的文献

1
A comparative evaluation of child health care in China using multicriteria decision analysis methods.
BMC Health Serv Res. 2023 Nov 7;23(1):1217. doi: 10.1186/s12913-023-10204-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验