Suppr超能文献

基于深度学习的自动识别系统传感器数据的警戒区交通预测。

Deep Learning-Based Caution Area Traffic Prediction with Automatic Identification System Sensor Data.

机构信息

Department of Computer Science, Chungbuk National University, Cheongju 28644, Korea.

出版信息

Sensors (Basel). 2018 Sep 19;18(9):3172. doi: 10.3390/s18093172.

Abstract

In a crowded harbor water area, it is a major concern to control ship traffic for assuring safety and maximizing the efficiency of port operations. Vessel Traffic Service (VTS) operators pay much attention to caution areas like ship route intersections or traffic congestion area in which there are some risks of ship collision. They want to control the traffic of the caution area at a proper level to lessen risk. Inertial ship movement makes swift changes in direction and speed difficult. It is hence important to predict future traffic of the caution area earlier on so as to get enough time for control actions on ship movements. In the harbor area, VTS stations collect a large volume of Automatic Identification Service (AIS) sensor data, which contain information about ship movement and ship attributes. This paper proposes a new deep neural network model called Ship Traffic Extraction Network (STENet) to predict the medium-term traffic and long-term traffic of the caution area. The STENet model is trained with AIS sensor data. The STENet model is organized into a hierarchical architecture in which the outputs of the movement and contextual feature extraction modules are concatenated and fed into a prediction module. The movement module extracts the features of overall ship movements with a convolutional neural network. The contextual modules consist of five separated fully-connected neural networks, each of which receives an associated attribute. The separation of feature extraction modules at the front phase helps extract the effective features by preventing unrelated attributes from crosstalking. To evaluate the performance of the proposed model, the developed model is applied to a real AIS sensor dataset, which has been collected over two years at a Korean port called Yeosu. In the experiments, four methods have been compared including two new methods: STENet and VGGNet-based models. For the real AIS sensor dataset, the proposed model has shown 50.65% relative performance improvement on average for the medium-term predictions and 57.65% improvement on average for the long-term predictions over the benchmark method, i.e., the SVR-based method.

摘要

在拥挤的港口水域,控制船舶交通以确保安全并最大程度地提高港口作业效率是一个主要关注点。船舶交通服务(VTS)运营商非常关注船舶航线交叉口或交通拥堵等警告区域,因为这些区域存在船舶碰撞的风险。他们希望将警告区域的交通控制在适当的水平,以降低风险。船舶惯性运动使得方向和速度的快速变化变得困难。因此,提前预测警告区域的未来交通情况非常重要,以便有足够的时间对船舶运动进行控制操作。在港口区域,VTS 站收集了大量的自动识别服务(AIS)传感器数据,其中包含有关船舶运动和船舶属性的信息。本文提出了一种新的深度神经网络模型,称为船舶交通提取网络(STENet),用于预测警告区域的中期和长期交通。STENet 模型使用 AIS 传感器数据进行训练。STENet 模型组织成一个层次结构,其中运动和上下文特征提取模块的输出被连接并输入到预测模块中。运动模块使用卷积神经网络提取船舶整体运动的特征。上下文模块由五个独立的全连接神经网络组成,每个网络接收一个相关属性。前阶段特征提取模块的分离有助于通过防止不相关属性的串扰来提取有效特征。为了评估所提出模型的性能,将开发的模型应用于在韩国的一个名为 Yeosu 的港口收集了两年的真实 AIS 传感器数据集。在实验中,比较了四种方法,包括两种新方法:STENet 和基于 VGGNet 的模型。对于真实的 AIS 传感器数据集,与基准方法(即基于 SVR 的方法)相比,所提出的模型在中期预测中的平均相对性能提高了 50.65%,在长期预测中的平均提高了 57.65%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de4a/6165579/5752711fcf0f/sensors-18-03172-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验