Suppr超能文献

模块化微结构设计构建具有明确功能连接的神经元网络。

Modular microstructure design to build neuronal networks of defined functional connectivity.

机构信息

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.

出版信息

Biosens Bioelectron. 2018 Dec 30;122:75-87. doi: 10.1016/j.bios.2018.08.075. Epub 2018 Sep 8.

Abstract

Theoretical and in vivo neuroscience research suggests that functional information transfer within neuronal networks is influenced by circuit architecture. Due to the dynamic complexities of the brain, it remains a challenge to test the correlation between structure and function of a defined network. Engineering controlled neuronal networks in vitro offers a way to test structural motifs; however, no method has achieved small, multi-node networks with stable, unidirectional connections. Here, we screened ten different microchannel architectures within polydimethylsiloxane (PDMS) devices to test their potential for axonal guidance. The most successful design had a 92% probability of achieving strictly unidirectional connections between nodes. Networks built from this design were cultured on multielectrode arrays and recorded on days in vitro 9, 12, 15 and 18 to investigate spontaneous and evoked bursting activity. Transfer entropy between subsequent nodes showed up to 100 times more directional flow of information compared to the control. Additionally, directed networks produced a greater amount of information flow, reinforcing the importance of directional connections in the brain being critical for reliable communication. By controlling the parameters of network formation, we minimized response variability and achieved functional, directional networks. The technique provides us with a tool to probe the spatio-temporal effects of different network motifs.

摘要

理论和体内神经科学研究表明,神经元网络内的功能信息传递受到电路结构的影响。由于大脑的动态复杂性,测试特定网络的结构和功能之间的相关性仍然是一个挑战。在体外工程控制神经元网络提供了一种测试结构基元的方法;然而,没有一种方法能够实现具有稳定单向连接的小型多节点网络。在这里,我们在聚二甲基硅氧烷 (PDMS) 器件中筛选了十种不同的微通道结构,以测试它们在轴突导向方面的潜力。最成功的设计在节点之间实现严格单向连接的概率为 92%。从该设计构建的网络在多电极阵列上进行培养,并在体外培养第 9、12、15 和 18 天进行记录,以研究自发和诱发爆发活动。与对照相比,后续节点之间的转移熵显示出多达 100 倍的信息更具方向性。此外,有向网络产生了更多的信息流,这强化了大脑中定向连接对于可靠通信的重要性。通过控制网络形成的参数,我们最大限度地减少了响应的可变性,并实现了功能性、有向网络。该技术为我们提供了一种探测不同网络基元时空效应的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验