Suppr超能文献

神经调质可改变电路对温度扰动的鲁棒性。

Circuit Robustness to Temperature Perturbation Is Altered by Neuromodulators.

机构信息

Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.

Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.

出版信息

Neuron. 2018 Nov 7;100(3):609-623.e3. doi: 10.1016/j.neuron.2018.08.035. Epub 2018 Sep 20.

Abstract

In the ocean, the crab Cancer borealis is subject to daily and seasonal temperature changes. Previous work, done in the presence of descending modulatory inputs, had shown that the pyloric rhythm of the crab increases in frequency as temperature increases but maintains its characteristic phase relationships until it "crashes" at extremely high temperatures. To study the interaction between neuromodulators and temperature perturbations, we studied the effects of temperature on preparations from which the descending modulatory inputs were removed. Under these conditions, the pyloric rhythm was destabilized. We then studied the effects of temperature on preparations in the presence of oxotremorine, proctolin, and serotonin. Oxotremorine and proctolin enhanced the robustness of the pyloric rhythm, whereas serotonin made the rhythm less robust. These experiments reveal considerable animal-to-animal diversity in their crash stability, consistent with the interpretation that cryptic differences in many cell and network parameters are revealed by extreme perturbations.

摘要

在海洋中,北方滨蟹 Cancer borealis 会受到日常和季节性温度变化的影响。之前的研究表明,在下行调制输入存在的情况下,随着温度的升高,蟹的幽门节律会增加频率,但会保持其特征相位关系,直到在极高的温度下“崩溃”。为了研究神经调质和温度干扰之间的相互作用,我们研究了温度对去除下行调制输入的制剂的影响。在这些条件下,幽门节律变得不稳定。然后,我们研究了在氧震颤素、促胃激素和血清素存在的情况下温度对制剂的影响。氧震颤素和促胃激素增强了幽门节律的稳健性,而血清素则降低了节律的稳健性。这些实验揭示了动物之间在崩溃稳定性方面存在相当大的多样性,这与以下解释一致,即许多细胞和网络参数的隐藏差异是通过极端干扰来揭示的。

相似文献

1
Circuit Robustness to Temperature Perturbation Is Altered by Neuromodulators.
Neuron. 2018 Nov 7;100(3):609-623.e3. doi: 10.1016/j.neuron.2018.08.035. Epub 2018 Sep 20.
2
Graded Transmission without Action Potentials Sustains Rhythmic Activity in Some But Not All Modulators That Activate the Same Current.
J Neurosci. 2018 Oct 17;38(42):8976-8988. doi: 10.1523/JNEUROSCI.2632-17.2018. Epub 2018 Sep 5.
3
Distinct functions for cotransmitters mediating motor pattern selection.
J Neurosci. 1999 Aug 15;19(16):6774-83. doi: 10.1523/JNEUROSCI.19-16-06774.1999.
4
Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.
J Neurosci. 1999 Jul 1;19(13):5449-63. doi: 10.1523/JNEUROSCI.19-13-05449.1999.
6
Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.
J Neurosci. 2000 Dec 1;20(23):8943-53. doi: 10.1523/JNEUROSCI.20-23-08943.2000.
7
Motor pattern selection via inhibition of parallel pathways.
J Neurosci. 1997 Jul 1;17(13):4965-75. doi: 10.1523/JNEUROSCI.17-13-04965.1997.
8
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
9
Modulators with convergent cellular actions elicit distinct circuit outputs.
J Neurosci. 2001 Jun 1;21(11):4050-8. doi: 10.1523/JNEUROSCI.21-11-04050.2001.

引用本文的文献

2
Impact of developmental temperature on neural growth, connectivity, and function.
Sci Adv. 2025 Jan 17;11(3):eadp9587. doi: 10.1126/sciadv.adp9587. Epub 2025 Jan 15.
5
The Brain's Best Kept Secret Is Its Degenerate Structure.
J Neurosci. 2024 Oct 2;44(40):e1339242024. doi: 10.1523/JNEUROSCI.1339-24.2024.
6
7
Resilience of circuits to environmental challenge.
Curr Opin Neurobiol. 2024 Aug;87:102885. doi: 10.1016/j.conb.2024.102885. Epub 2024 Jun 9.
8
I Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in .
bioRxiv. 2024 Aug 6:2024.05.04.592541. doi: 10.1101/2024.05.04.592541.
9
Alterations in network robustness upon simultaneous temperature and pH perturbations.
J Neurophysiol. 2024 Mar 1;131(3):509-515. doi: 10.1152/jn.00483.2023. Epub 2024 Jan 24.
10
Switching neuron contributions to second network activity.
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.

本文引用的文献

1
Functional consequences of neuropeptide and small-molecule co-transmission.
Nat Rev Neurosci. 2017 Jul;18(7):389-403. doi: 10.1038/nrn.2017.56. Epub 2017 Jun 8.
2
Activation mechanism of a neuromodulator-gated pacemaker ionic current.
J Neurophysiol. 2017 Jul 1;118(1):595-609. doi: 10.1152/jn.00743.2016. Epub 2017 Apr 26.
4
Homeostasis: How Neurons Achieve Temperature Invariance.
Curr Biol. 2016 Nov 7;26(21):R1141-R1143. doi: 10.1016/j.cub.2016.09.063.
5
Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation.
Curr Biol. 2016 Nov 7;26(21):2935-2941. doi: 10.1016/j.cub.2016.08.061. Epub 2016 Oct 13.
7
Neuromodulatory Regulation of Behavioral Individuality in Zebrafish.
Neuron. 2016 Aug 3;91(3):587-601. doi: 10.1016/j.neuron.2016.06.016. Epub 2016 Jul 7.
8
Voltage Dependence of a Neuromodulator-Activated Ionic Current.
eNeuro. 2016 May 12;3(2). doi: 10.1523/ENEURO.0038-16.2016. eCollection 2016 Mar-Apr.
9
Functional Segregation of Cortical Regions Underlying Speech Timing and Articulation.
Neuron. 2016 Mar 16;89(6):1187-1193. doi: 10.1016/j.neuron.2016.01.032. Epub 2016 Feb 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验