Suppr超能文献

神经退行性疾病中的蛋白质错误折叠、聚集和构象应变。

Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.

机构信息

Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, Texas, USA.

出版信息

Nat Neurosci. 2018 Oct;21(10):1332-1340. doi: 10.1038/s41593-018-0235-9. Epub 2018 Sep 24.

Abstract

A hallmark event in neurodegenerative diseases (NDs) is the misfolding, aggregation, and accumulation of proteins, leading to cellular dysfunction, loss of synaptic connections, and brain damage. Despite the involvement of distinct proteins in different NDs, the process of protein misfolding and aggregation is remarkably similar. A recent breakthrough in the field was the discovery that misfolded protein aggregates can self-propagate through seeding and spread the pathological abnormalities between cells and tissues in a manner akin to the behavior of infectious prions in prion diseases. This discovery has vast implications for understanding the mechanisms involved in the initiation and progression of NDs, as well as for the design of novel strategies for treatment and diagnosis. In this Review, we provide a critical discussion of the role of protein misfolding and aggregation in NDs. Commonalities and differences between distinct protein aggregates will be highlighted, in addition to evidence supporting the hypothesis that misfolded aggregates can be transmissible by the prion principle. We will also describe the molecular basis and implications for prion-like conformational strains, cross-interaction between different misfolded proteins in the brain, and how these concepts can be applied to the development of novel strategies for therapy and diagnosis.

摘要

神经退行性疾病(NDs)的一个标志事件是蛋白质的错误折叠、聚集和积累,导致细胞功能障碍、突触连接丧失和大脑损伤。尽管不同的 NDs 涉及不同的蛋白质,但蛋白质错误折叠和聚集的过程非常相似。该领域的一个最新突破是发现错误折叠的蛋白聚集体可以通过接种自我传播,并以类似于朊病毒疾病中感染性朊病毒的行为在细胞和组织之间传播病理异常。这一发现对理解 NDs 的起始和进展所涉及的机制,以及设计治疗和诊断的新策略具有重要意义。在这篇综述中,我们对蛋白质错误折叠和聚集在 NDs 中的作用进行了批判性的讨论。除了支持错误折叠的聚集体可以通过朊病毒原理传播的假设的证据外,我们还将重点介绍不同蛋白质聚集体之间的共性和差异。我们还将描述朊病毒样构象应变的分子基础和意义、大脑中不同错误折叠蛋白质之间的交叉相互作用,以及如何将这些概念应用于治疗和诊断新策略的开发。

相似文献

1
Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.
Nat Neurosci. 2018 Oct;21(10):1332-1340. doi: 10.1038/s41593-018-0235-9. Epub 2018 Sep 24.
2
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases.
Mol Neurobiol. 2022 Dec;59(12):7513-7540. doi: 10.1007/s12035-022-03042-8. Epub 2022 Oct 7.
3
Protein misfolding and neurodegeneration.
Arch Neurol. 2008 Feb;65(2):184-9. doi: 10.1001/archneurol.2007.56.
5
The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.
J Cell Biol. 2017 Sep 4;216(9):2633-2644. doi: 10.1083/jcb.201701047. Epub 2017 Jul 19.
6
Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases.
Int J Mol Sci. 2018 Oct 9;19(10):3081. doi: 10.3390/ijms19103081.
8
Synthetic prions and other human neurodegenerative proteinopathies.
Virus Res. 2015 Sep 2;207:25-37. doi: 10.1016/j.virusres.2014.10.020. Epub 2014 Oct 31.
9
Diverse Misfolded Conformational Strains and Cross-seeding of Misfolded Proteins Implicated in Neurodegenerative Diseases.
Front Mol Neurosci. 2019 Jul 9;12:158. doi: 10.3389/fnmol.2019.00158. eCollection 2019.
10
Protein aggregation, misfolding and consequential human neurodegenerative diseases.
Int J Neurosci. 2017 Nov;127(11):1047-1057. doi: 10.1080/00207454.2017.1286339. Epub 2017 Feb 8.

引用本文的文献

1
Proteo-transcriptomic reprogramming and resource reallocation define the aging mammalian brain.
bioRxiv. 2025 Aug 19:2025.08.14.669896. doi: 10.1101/2025.08.14.669896.
2
Advancements in extracellular vesicle therapy for neurodegenerative diseases.
Explor Neuroprotective Ther. 2025;5. doi: 10.37349/ent.2025.1004104. Epub 2025 May 6.
4
Transnasal-brain delivery of nanomedicines for neurodegenerative diseases.
Front Drug Deliv. 2023 Aug 11;3:1247162. doi: 10.3389/fddev.2023.1247162. eCollection 2023.
5
Design of Ig-like binders targeting α-synuclein fibril for mitigating its pathological activities.
Nat Commun. 2025 Aug 9;16(1):7368. doi: 10.1038/s41467-025-62755-1.
7
Nanoparticles with Ampholytic Surfaces for Binding and Disintegration of Amyloid Fibrils.
ACS Cent Sci. 2025 Jul 2;11(7):1218-1229. doi: 10.1021/acscentsci.5c00519. eCollection 2025 Jul 23.
8
Arsenic binds to nuclear transport factors and disrupts nucleocytoplasmic transport.
J Cell Sci. 2025 Aug 15;138(16). doi: 10.1242/jcs.263889.
10
How does protein aggregate structure affect mechanisms of disaggregation?
Biochem Soc Trans. 2025 Aug 29;53(4):881-895. doi: 10.1042/BST20253077.

本文引用的文献

1
The role of microbial amyloid in neurodegeneration.
PLoS Pathog. 2017 Dec 21;13(12):e1006654. doi: 10.1371/journal.ppat.1006654. eCollection 2017 Dec.
3
Why do so many clinical trials of therapies for Alzheimer's disease fail?
Lancet. 2017 Nov 25;390(10110):2327-2329. doi: 10.1016/S0140-6736(17)32399-1.
4
Scaling behaviour and rate-determining steps in filamentous self-assembly.
Chem Sci. 2017 Oct 1;8(10):7087-7097. doi: 10.1039/c7sc01965c. Epub 2017 Aug 31.
6
Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain.
J Neurosci. 2017 Nov 22;37(47):11406-11423. doi: 10.1523/JNEUROSCI.1230-17.2017. Epub 2017 Oct 20.
7
Prion strains in mammals: Different conformations leading to disease.
PLoS Pathog. 2017 Jul 6;13(7):e1006323. doi: 10.1371/journal.ppat.1006323. eCollection 2017 Jul.
8
Cryo-EM structures of tau filaments from Alzheimer's disease.
Nature. 2017 Jul 13;547(7662):185-190. doi: 10.1038/nature23002. Epub 2017 Jul 5.
9
Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo.
Mol Psychiatry. 2018 Mar;23(3):777-788. doi: 10.1038/mp.2017.84. Epub 2017 Jun 20.
10
Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium.
Neurology. 2017 Jul 4;89(1):88-100. doi: 10.1212/WNL.0000000000004058. Epub 2017 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验