1 Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.
2 Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts.
J Palliat Med. 2019 Feb;22(2):179-182. doi: 10.1089/jpm.2018.0294. Epub 2018 Sep 22.
Alone, administrative data poorly identifies patients with palliative care needs.
To identify patients with uncommon, yet devastating, illnesses using a combination of administrative data and natural language processing (NLP).
DESIGN/SETTING: Retrospective cohort study using the electronic medical records of a healthcare network totaling over 2500 hospital beds. We sought to identify patient populations with two unique disease processes associated with a poor prognosis: pneumoperitoneum and leptomeningeal metastases from breast cancer.
Patients with pneumoperitoneum or leptomeningeal metastasis from breast cancer were identified through administrative codes and NLP.
Administrative codes alone resulted in identification of 6438 patients with possible pneumoperitoneum and 557 patients with possible leptomeningeal metastasis. Adding NLP to this analysis reduced the number of patients to 869 with pneumoperitoneum and 187 with leptomeningeal metastasis secondary to breast cancer. Administrative codes alone yielded a 13% positive predictive value (PPV) for pneumoperitoneum and 25% PPV for leptomeningeal metastasis. The combination of administrative codes and NLP achieved a PPV of 100%. The entire process was completed within hours.
Adding NLP to the use of administrative codes allows for rapid identification of seriously ill patients with otherwise difficult to detect disease processes and eliminates costly, tedious, and time-intensive manual chart review. This method enables studies to evaluate the effectiveness of treatment, including palliative interventions, for unique populations of seriously ill patients who cannot be identified by administrative codes alone.
仅使用行政数据很难识别有姑息治疗需求的患者。
使用行政数据和自然语言处理(NLP)相结合的方法来识别患有罕见但具有破坏性疾病的患者。
设计/设置:这是一项回顾性队列研究,使用了一个拥有超过 2500 张病床的医疗保健网络的电子病历。我们试图确定两种与预后不良相关的独特疾病过程的患者人群:气腹和乳腺癌脑膜转移。
通过行政代码和 NLP 识别出患有气腹或乳腺癌脑膜转移的患者。
仅使用行政代码就识别出了 6438 例可能患有气腹的患者和 557 例可能患有乳腺癌脑膜转移的患者。将 NLP 添加到该分析中,将气腹患者的数量减少到 869 例,乳腺癌脑膜转移患者的数量减少到 187 例。行政代码单独用于气腹的阳性预测值(PPV)为 13%,用于脑膜转移的 PPV 为 25%。行政代码和 NLP 的组合实现了 100%的 PPV。整个过程在数小时内完成。
将 NLP 添加到行政代码的使用中,可以快速识别出那些疾病过程难以检测但病情严重的患者,并消除了昂贵、繁琐且耗时的手动图表审查。这种方法使研究能够评估治疗效果,包括姑息治疗干预措施,对于那些仅通过行政代码无法识别的患有严重疾病的独特患者群体。