Suppr超能文献

大海捞针:自然语言处理识别严重疾病

Needle in a Haystack: Natural Language Processing to Identify Serious Illness.

机构信息

1 Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.

2 Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts.

出版信息

J Palliat Med. 2019 Feb;22(2):179-182. doi: 10.1089/jpm.2018.0294. Epub 2018 Sep 22.

Abstract

BACKGROUND

Alone, administrative data poorly identifies patients with palliative care needs.

OBJECTIVE

To identify patients with uncommon, yet devastating, illnesses using a combination of administrative data and natural language processing (NLP).

DESIGN/SETTING: Retrospective cohort study using the electronic medical records of a healthcare network totaling over 2500 hospital beds. We sought to identify patient populations with two unique disease processes associated with a poor prognosis: pneumoperitoneum and leptomeningeal metastases from breast cancer.

MEASUREMENTS

Patients with pneumoperitoneum or leptomeningeal metastasis from breast cancer were identified through administrative codes and NLP.

RESULTS

Administrative codes alone resulted in identification of 6438 patients with possible pneumoperitoneum and 557 patients with possible leptomeningeal metastasis. Adding NLP to this analysis reduced the number of patients to 869 with pneumoperitoneum and 187 with leptomeningeal metastasis secondary to breast cancer. Administrative codes alone yielded a 13% positive predictive value (PPV) for pneumoperitoneum and 25% PPV for leptomeningeal metastasis. The combination of administrative codes and NLP achieved a PPV of 100%. The entire process was completed within hours.

CONCLUSIONS

Adding NLP to the use of administrative codes allows for rapid identification of seriously ill patients with otherwise difficult to detect disease processes and eliminates costly, tedious, and time-intensive manual chart review. This method enables studies to evaluate the effectiveness of treatment, including palliative interventions, for unique populations of seriously ill patients who cannot be identified by administrative codes alone.

摘要

背景

仅使用行政数据很难识别有姑息治疗需求的患者。

目的

使用行政数据和自然语言处理(NLP)相结合的方法来识别患有罕见但具有破坏性疾病的患者。

设计/设置:这是一项回顾性队列研究,使用了一个拥有超过 2500 张病床的医疗保健网络的电子病历。我们试图确定两种与预后不良相关的独特疾病过程的患者人群:气腹和乳腺癌脑膜转移。

测量

通过行政代码和 NLP 识别出患有气腹或乳腺癌脑膜转移的患者。

结果

仅使用行政代码就识别出了 6438 例可能患有气腹的患者和 557 例可能患有乳腺癌脑膜转移的患者。将 NLP 添加到该分析中,将气腹患者的数量减少到 869 例,乳腺癌脑膜转移患者的数量减少到 187 例。行政代码单独用于气腹的阳性预测值(PPV)为 13%,用于脑膜转移的 PPV 为 25%。行政代码和 NLP 的组合实现了 100%的 PPV。整个过程在数小时内完成。

结论

将 NLP 添加到行政代码的使用中,可以快速识别出那些疾病过程难以检测但病情严重的患者,并消除了昂贵、繁琐且耗时的手动图表审查。这种方法使研究能够评估治疗效果,包括姑息治疗干预措施,对于那些仅通过行政代码无法识别的患有严重疾病的独特患者群体。

相似文献

1
Needle in a Haystack: Natural Language Processing to Identify Serious Illness.
J Palliat Med. 2019 Feb;22(2):179-182. doi: 10.1089/jpm.2018.0294. Epub 2018 Sep 22.
3
Natural Language Processing Combined with ICD-9-CM Codes as a Novel Method to Study the Epidemiology of Allergic Drug Reactions.
J Allergy Clin Immunol Pract. 2020 Mar;8(3):1032-1038.e1. doi: 10.1016/j.jaip.2019.12.007. Epub 2019 Dec 16.
4
Natural Language Processing to Assess End-of-Life Quality Indicators in Cancer Patients Receiving Palliative Surgery.
J Palliat Med. 2019 Feb;22(2):183-187. doi: 10.1089/jpm.2018.0326. Epub 2018 Oct 17.
6
Natural Language Processing Accurately Measures Adherence to Best Practice Guidelines for Palliative Care in Trauma.
J Pain Symptom Manage. 2020 Feb;59(2):225-232.e2. doi: 10.1016/j.jpainsymman.2019.09.017. Epub 2019 Sep 25.
7
Defining a Patient Population With Cirrhosis: An Automated Algorithm With Natural Language Processing.
J Clin Gastroenterol. 2016 Nov/Dec;50(10):889-894. doi: 10.1097/MCG.0000000000000583.
9
Natural Language Processing for the Identification of Surgical Site Infections in Orthopaedics.
J Bone Joint Surg Am. 2019 Dec 18;101(24):2167-2174. doi: 10.2106/JBJS.19.00661.

引用本文的文献

3
Harnessing Natural Language Processing to Assess Quality of End-of-Life Care for Children With Cancer.
JCO Clin Cancer Inform. 2024 Sep;8:e2400134. doi: 10.1200/CCI.24.00134.
4
A Multi-Institutional Natural Language Processing Pipeline to Extract Performance Status From Electronic Health Records.
Cancer Control. 2024 Jan-Dec;31:10732748241279518. doi: 10.1177/10732748241279518.
5
Delirium and Healthcare Utilization in Patients Undergoing Hematopoietic Stem Cell Transplantation.
Transplant Cell Ther. 2023 May;29(5):334.e1-334.e7. doi: 10.1016/j.jtct.2023.01.028. Epub 2023 Feb 1.
6
Simulation Education Incorporating Academic Electronic Medical Records for Undergraduate Nursing Students: A Pilot Study.
Healthc Inform Res. 2022 Oct;28(4):376-386. doi: 10.4258/hir.2022.28.4.376. Epub 2022 Oct 31.
7
Charting a path to high-quality end-of-life care for children with cancer.
Cancer. 2022 Oct;128(20):3586-3592. doi: 10.1002/cncr.34419. Epub 2022 Aug 25.
9
Implications of Physical Access Barriers for Breast Cancer Diagnosis and Treatment in Women with Mobility Disability.
J Disabil Policy Stud. 2022 Jun;33(1):46-54. doi: 10.1177/10442073211010124. Epub 2021 May 10.
10
SplitAVG: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging.
IEEE J Biomed Health Inform. 2022 Sep;26(9):4635-4644. doi: 10.1109/JBHI.2022.3185956. Epub 2022 Sep 9.

本文引用的文献

1
Determinants of prolonged survival for breast cancer patient groups with leptomeningeal metastasis (LM).
J Neurooncol. 2018 May;138(1):191-198. doi: 10.1007/s11060-018-2790-z. Epub 2018 Feb 12.
2
Nonoperative Management of Perforated Hollow Viscera in a Palliative Care Unit.
Ann Surg. 2018 Jul;268(1):e1-e3. doi: 10.1097/SLA.0000000000002683.
3
Identifying the Population with Serious Illness: The "Denominator" Challenge.
J Palliat Med. 2018 Mar;21(S2):S7-S16. doi: 10.1089/jpm.2017.0548. Epub 2017 Nov 10.
4
Measuring Processes of Care in Palliative Surgery: A Novel Approach Using Natural Language Processing.
Ann Surg. 2018 May;267(5):823-825. doi: 10.1097/SLA.0000000000002579.
5
Treatment and prognosis of leptomeningeal disease secondary to metastatic breast cancer: A single-centre experience.
Breast. 2017 Dec;36:54-59. doi: 10.1016/j.breast.2017.07.015. Epub 2017 Sep 29.
6
Caring for High-Need, High-Cost Patients - An Urgent Priority.
N Engl J Med. 2016 Sep 8;375(10):909-11. doi: 10.1056/NEJMp1608511. Epub 2016 Jul 27.
8
Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system.
Health Aff (Millwood). 2014 Jul;33(7):1163-70. doi: 10.1377/hlthaff.2014.0053.
9
Big data in health care: using analytics to identify and manage high-risk and high-cost patients.
Health Aff (Millwood). 2014 Jul;33(7):1123-31. doi: 10.1377/hlthaff.2014.0041.
10
It is possible: quality measurement during serious illness.
JAMA Intern Med. 2013;173(22):2080-1. doi: 10.1001/jamainternmed.2013.9469.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验