Suppr超能文献

非时不变随机矩阵的条件谱密度理论。

Theory for the conditioned spectral density of noninvariant random matrices.

机构信息

Department of Quantum Physics and Photonics, Institute of Physics, UNAM, P.O. Box 20-364, 01000 Mexico City, Mexico and London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom.

Institute of Physics, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil; Physics Department, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil; and London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom.

出版信息

Phys Rev E. 2018 Aug;98(2-1):020102. doi: 10.1103/PhysRevE.98.020102.

Abstract

We develop a theoretical approach to compute the conditioned spectral density of N×N noninvariant random matrices in the limit N→∞. This large deviation observable, defined as the eigenvalue distribution conditioned to have a fixed fraction k of eigenvalues smaller than x∈R, provides the spectrum of random matrix samples that deviate atypically from the average behavior. We apply our theory to sparse random matrices and unveil strikingly different and generic properties, namely, (i) their conditioned spectral density has compact support, (ii) it does not experience any abrupt transition for k around its typical value, and (iii) its eigenvalues do not accumulate at x. Moreover, our work points towards other types of transitions in the conditioned spectral density for values of k away from its typical value. These properties follow from the weak or absent eigenvalue repulsion in sparse ensembles and they are in sharp contrast to those displayed by classic or rotationally invariant random matrices. The exactness of our theoretical findings are confirmed through numerical diagonalization of finite random matrices.

摘要

我们提出了一种理论方法,用于计算 N×N 非不变随机矩阵在 N→∞极限下的条件谱密度。这个大偏差可观测量定义为特征值分布的条件,条件是有固定分数 k 的特征值小于 x∈R,它提供了偏离平均行为的随机矩阵样本的频谱。我们将我们的理论应用于稀疏随机矩阵,并揭示出截然不同的通用特性,即:(i)其条件谱密度具有紧支撑;(ii)它在 k 围绕其典型值时不会经历任何突然的转变;(iii)其特征值不在 x 处聚集。此外,我们的工作指出了在 k 远离其典型值时,条件谱密度中其他类型的转变。这些特性源自稀疏集合中弱或不存在的特征值排斥,与经典或旋转不变随机矩阵显示的特性形成鲜明对比。通过对有限随机矩阵的数值对角化,我们验证了我们理论发现的精确性。

相似文献

1
Theory for the conditioned spectral density of noninvariant random matrices.
Phys Rev E. 2018 Aug;98(2-1):020102. doi: 10.1103/PhysRevE.98.020102.
2
Large-deviation theory for diluted Wishart random matrices.
Phys Rev E. 2018 Mar;97(3-1):032124. doi: 10.1103/PhysRevE.97.032124.
3
Commutative law for products of infinitely large isotropic random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022107. doi: 10.1103/PhysRevE.88.022107. Epub 2013 Aug 7.
4
Index statistical properties of sparse random graphs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042153. doi: 10.1103/PhysRevE.92.042153. Epub 2015 Oct 28.
5
Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs Inside an Interval.
Phys Rev Lett. 2016 Sep 2;117(10):104101. doi: 10.1103/PhysRevLett.117.104101. Epub 2016 Sep 1.
6
Free random Lévy and Wigner-Lévy matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051126. doi: 10.1103/PhysRevE.75.051126. Epub 2007 May 30.
7
Spectrum of the product of independent random Gaussian matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041132. doi: 10.1103/PhysRevE.81.041132. Epub 2010 Apr 27.
8
Extreme value statistics of eigenvalues of Gaussian random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041108. doi: 10.1103/PhysRevE.77.041108. Epub 2008 Apr 10.
9
Cavity approach to the spectral density of sparse symmetric random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031116. doi: 10.1103/PhysRevE.78.031116. Epub 2008 Sep 10.
10
Weak commutation relations and eigenvalue statistics for products of rectangular random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032106. doi: 10.1103/PhysRevE.89.032106. Epub 2014 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验