Department of Quantum Physics and Photonics, Institute of Physics, UNAM, P.O. Box 20-364, 01000 Mexico City, Mexico and London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom.
Institute of Physics, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil; Physics Department, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil; and London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom.
Phys Rev E. 2018 Aug;98(2-1):020102. doi: 10.1103/PhysRevE.98.020102.
We develop a theoretical approach to compute the conditioned spectral density of N×N noninvariant random matrices in the limit N→∞. This large deviation observable, defined as the eigenvalue distribution conditioned to have a fixed fraction k of eigenvalues smaller than x∈R, provides the spectrum of random matrix samples that deviate atypically from the average behavior. We apply our theory to sparse random matrices and unveil strikingly different and generic properties, namely, (i) their conditioned spectral density has compact support, (ii) it does not experience any abrupt transition for k around its typical value, and (iii) its eigenvalues do not accumulate at x. Moreover, our work points towards other types of transitions in the conditioned spectral density for values of k away from its typical value. These properties follow from the weak or absent eigenvalue repulsion in sparse ensembles and they are in sharp contrast to those displayed by classic or rotationally invariant random matrices. The exactness of our theoretical findings are confirmed through numerical diagonalization of finite random matrices.
我们提出了一种理论方法,用于计算 N×N 非不变随机矩阵在 N→∞极限下的条件谱密度。这个大偏差可观测量定义为特征值分布的条件,条件是有固定分数 k 的特征值小于 x∈R,它提供了偏离平均行为的随机矩阵样本的频谱。我们将我们的理论应用于稀疏随机矩阵,并揭示出截然不同的通用特性,即:(i)其条件谱密度具有紧支撑;(ii)它在 k 围绕其典型值时不会经历任何突然的转变;(iii)其特征值不在 x 处聚集。此外,我们的工作指出了在 k 远离其典型值时,条件谱密度中其他类型的转变。这些特性源自稀疏集合中弱或不存在的特征值排斥,与经典或旋转不变随机矩阵显示的特性形成鲜明对比。通过对有限随机矩阵的数值对角化,我们验证了我们理论发现的精确性。