Suppr超能文献

从系统发育树和性状数据中检测多样化对多个性状的依赖性。

Detecting the Dependence of Diversification on Multiple Traits from Phylogenetic Trees and Trait Data.

机构信息

Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, Groningen 9700 CC, The Netherlands.

出版信息

Syst Biol. 2019 Mar 1;68(2):317-328. doi: 10.1093/sysbio/syy057.

Abstract

Species diversification may be determined by many different variables, including the traits of the diversifying lineages. The state-dependent speciation and extinction (SSE) framework contains methods to detect the dependence of diversification on these traits. For the analysis of traits with multiple states, MuSSE (multiple-states dependent speciation and extinction) was developed. However, MuSSE and other SSE models have been shown to yield false positives, because they cannot separate differential diversification rates from dependence of diversification on the observed traits. The recently introduced method HiSSE (hidden-state-dependent speciation and extinction) resolves this problem by allowing a hidden state to affect diversification rates. Unfortunately, HiSSE does not allow traits with more than two states, and, perhaps more interestingly, the simultaneous action of multiple traits on diversification. Herein, we introduce an R package (SecSSE: several examined and concealed states-dependent speciation and extinction) that combines the features of HiSSE and MuSSE to simultaneously infer state-dependent diversification across two or more examined (observed) traits or states while accounting for the role of a possible concealed (hidden) trait. Moreover, SecSSE also has improved functionality when compared with its two "parents." First, it allows for an observed trait being in two or more states simultaneously, which is useful for example when a taxon is a generalist or when the exact state is not precisely known. Second, it provides the correct likelihood when conditioned on nonextinction, which has been incorrectly implemented in HiSSE and other SSE models. To illustrate our method, we apply SecSSE to seven previous studies that used MuSSE, and find that in five out of seven cases, the conclusions drawn based on MuSSE were premature. We test with simulations whether SecSSE sacrifices statistical power to avoid the high Type I error problem of MuSSE, but we find that this is not the case: for the majority of simulations where the observed traits affect diversification, SecSSE detects this.

摘要

物种多样化可能由许多不同的变量决定,包括多样化谱系的特征。状态依赖的物种形成和灭绝(SSE)框架包含了检测这些特征对多样化的依赖的方法。对于具有多个状态的特征分析,开发了 MuSSE(多状态依赖的物种形成和灭绝)。然而,MuSSE 和其他 SSE 模型已经被证明会产生假阳性,因为它们不能将不同的多样化率与多样化对观察到的特征的依赖分开。最近引入的方法 HiSSE(隐藏状态依赖的物种形成和灭绝)通过允许隐藏状态影响多样化率来解决这个问题。不幸的是,HiSSE 不允许具有超过两个状态的特征,也许更有趣的是,多个特征同时对多样化产生影响。在此,我们引入了一个 R 包(SecSSE:几种检查和隐藏状态依赖的物种形成和灭绝),它结合了 HiSSE 和 MuSSE 的特点,同时推断两个或多个检查(观察)特征或状态下的状态依赖多样化,同时考虑到可能的隐藏(隐藏)特征的作用。此外,SecSSE 与其两个“父母”相比,具有改进的功能。首先,它允许观察到的特征同时处于两个或多个状态,这在例如当一个分类单元是多面手或确切状态不精确已知时很有用。其次,它在不灭绝的情况下提供正确的似然,这在 HiSSE 和其他 SSE 模型中被错误地实现了。为了说明我们的方法,我们将 SecSSE 应用于之前使用 MuSSE 的七个研究,发现其中有五个研究的结论是不成熟的。我们通过模拟测试 SecSSE 是否为避免 MuSSE 的高 I 型错误问题而牺牲统计能力,但我们发现并非如此:对于大多数观察到的特征影响多样化的模拟,SecSSE 可以检测到这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验