Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah.
Department of Radiology, Stanford University, Palo Alto, California.
Magn Reson Med. 2019 Feb;81(2):1104-1117. doi: 10.1002/mrm.27477. Epub 2018 Sep 26.
To implement and evaluate an efficient multiple-point MR acoustic radiation force imaging pulse sequence that can volumetrically measure tissue displacement and evaluate tissue stiffness using focused ultrasound (FUS) radiation force.
Bipolar motion-encoding gradients were added to a gradient-recalled echo segmented EPI pulse sequence with both 2D and 3D acquisition modes. Multiple FUS-ON images (FUS power > 0 W) were interleaved with a single FUS-OFF image (FUS power = 0 W) on the TR level, enabling simultaneous measurements of volumetric tissue displacement (by complex subtraction of the FUS-OFF image from the FUS-ON images) and proton resonance frequency shift MR thermometry (from the OFF image). Efficiency improvements included partial Fourier acquisition, parallel imaging, and encoding up to 4 different displacement positions into a single image. Experiments were performed in homogenous and dual-stiffness phantoms, and in ex vivo porcine brain.
In phantoms, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 5 s to 10 s for a 2D slice, and 60 s for a 3D volume, using parallel imaging and encoding 2 displacement positions/image. In ex vivo porcine brain, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 20 s for a 3D volume, using partial Fourier and parallel imaging and encoding 4 displacement positions/image. In 1 experiment it was observed that tissue displacement in ex vivo brain decreased by approximately 22% following FUS ablation.
With the described efficiency improvements it is possible to acquire volumetric multiple-point magnetic resonance acoustic radiation force imaging maps, with simultaneous proton resonance frequency shift MR thermometry maps, in clinically acceptable times.
实现并评估一种高效的多点磁共振声辐射力成像脉冲序列,该序列可利用聚焦超声(FUS)辐射力对组织位移进行容积测量,并评估组织硬度。
在梯度回波分段 EPI 脉冲序列中添加了双极运动编码梯度,该序列具有 2D 和 3D 采集模式。在 TR 水平上,多个 FUS-ON 图像(FUS 功率>0 W)与单个 FUS-OFF 图像(FUS 功率=0 W)交错,从而能够同时测量容积组织位移(通过对 FUS-OFF 图像与 FUS-ON 图像进行复数相减)和质子共振频率偏移磁共振测温(来自 OFF 图像)。效率提高包括部分傅里叶采集、并行成像以及将多达 4 个不同的位移位置编码到单个图像中。在均匀和双硬度 phantom 以及离体猪脑上进行了实验。
在 phantom 中,使用并行成像和每幅图像编码 2 个位移位置,可以在 5 秒到 10 秒内采集到 2D 切片的 16 点多点磁共振声辐射力成像图,在 60 秒内采集到 3D 容积的 16 点多点磁共振声辐射力成像图。在离体猪脑中,使用部分傅里叶和并行成像以及每幅图像编码 4 个位移位置,可以在 20 秒内采集到 3D 容积的 16 点多点磁共振声辐射力成像图。在 1 项实验中观察到,离体脑组织的位移在 FUS 消融后减少了约 22%。
通过描述的效率提高,可以在临床可接受的时间内采集容积多点磁共振声辐射力成像图,并同时采集质子共振频率偏移磁共振测温图。