Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Angew Chem Int Ed Engl. 2018 Dec 10;57(50):16286-16290. doi: 10.1002/anie.201808750. Epub 2018 Nov 20.
The bacterial Min protein system was encapsulated in giant unilamellar vesicles (GUVs). Using confocal fluorescence microscopy, we identified several distinct modes of spatiotemporal patterns inside spherical GUVs. For osmotically deflated GUVs, the vesicle shape actively changed in concert with the Min oscillations. The periodic relocation of Min proteins from the vesicle lumen to the membrane and back is accompanied by drastic changes in the mechanical properties of the lipid bilayer. In particular, two types of oscillating membrane-shape changes are highlighted: 1) GUVs that repeatedly undergo fission into two connected compartments and fusion of these compartments back into a dumbbell shape and 2) GUVs that show periodic budding and subsequent merging of the buds with the mother vesicle, accompanied by an overall shape change of the vesicle reminiscent of a bouncing ball. These findings demonstrate how reaction-diffusion-based protein self-organization can directly yield visible mechanical effects on membrane compartments, even up to autonomous division, without the need for coupling to cytoskeletal elements.
细菌 Min 蛋白系统被包裹在巨大的单层囊泡(GUV)中。使用共聚焦荧光显微镜,我们在球形 GUV 内部鉴定出几种不同的时空调控模式。对于渗透压减小的 GUV,囊泡形状与 Min 震荡协同主动变化。Min 蛋白从囊泡腔到膜再返回的周期性重新定位伴随着脂质双层机械性质的剧烈变化。特别是突出显示了两种类型的震荡膜形状变化:1)GUV 反复分裂成两个相连的隔室,然后这些隔室融合回哑铃形状;2)GUV 周期性出芽,随后芽与母囊泡融合,伴随着囊泡整体形状变化,类似于弹球。这些发现表明,基于反应扩散的蛋白质自组织如何能够直接在膜隔室上产生可见的机械效应,甚至可以达到自主分裂,而无需与细胞骨架元件耦合。