Suppr超能文献

关于基于直接数值模拟(DNS)数据的雷诺平均纳维-斯托克斯方程(RANS)模拟的准确性

On the accuracy of RANS simulations with DNS data.

作者信息

Poroseva Svetlana V, Colmenares F Juan D, Murman Scott M

机构信息

Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, U.S.A.

NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

出版信息

Phys Fluids (1994). 2016 Nov;28(11). doi: 10.1063/1.4966639. Epub 2016 Nov 22.

Abstract

Simulation results conducted for incompressible planar wall-bounded turbulent flows with the Reynolds-Averaged Navier-Stokes (RANS) equations with no modeling involved are presented. Instead, all terms but the molecular diffusion are represented by the data from direct numerical simulation (DNS). In simulations, the transport equations for velocity moments through the second order (and the fourth order where the data are available) are solved in a zero-pressure gradient boundary layer over a flat plate and in a fully-developed channel flow in a wide range of Reynolds numbers using DNS data from Sillero et al. (2013), Lee & Moser (2015), and Jeyapaul et al. (2015). The results obtained demonstrate that DNS data are the significant and dominant source of uncertainty in such simulations (hereafter, RANS-DNS simulations). Effects of the Reynolds number, flow geometry, and the velocity moment order as well as an uncertainty quantification technique used to collect the DNS data on the results of RANS-DNS simulations are analyzed. New criteria for uncertainty quantification in statistical data collected from DNS are proposed to guarantee the data accuracy sufficient for their use in RANS equations and for the turbulence model validation.

摘要

本文给出了对不可压缩平面壁面湍流进行模拟的结果,该模拟采用雷诺平均纳维 - 斯托克斯(RANS)方程,不涉及任何模型。相反,除分子扩散项外的所有项均由直接数值模拟(DNS)数据表示。在模拟中,利用Sillero等人(2013年)、Lee和Moser(2015年)以及Jeyapaul等人(2015年)的DNS数据,在零压力梯度平板边界层和不同雷诺数下充分发展的通道流中求解二阶(以及有数据时的四阶)速度矩的输运方程。所得结果表明,DNS数据是此类模拟(以下简称RANS - DNS模拟)中不确定性的重要且主要来源。分析了雷诺数、流动几何形状、速度矩阶数以及用于收集DNS数据的不确定性量化技术对RANS - DNS模拟结果的影响。提出了从DNS收集的统计数据中进行不确定性量化的新标准,以确保数据精度足以用于RANS方程和湍流模型验证。

相似文献

1
On the accuracy of RANS simulations with DNS data.
Phys Fluids (1994). 2016 Nov;28(11). doi: 10.1063/1.4966639. Epub 2016 Nov 22.
5
On the Turbulence Modeling of Blood Flow in a Stenotic Vessel.
J Biomech Eng. 2020 Jan 1;142(1). doi: 10.1115/1.4044029.
7
A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES.
Entropy (Basel). 2024 Dec 14;26(12):1095. doi: 10.3390/e26121095.
9
Multi-fidelity modelling of shark skin denticle flows: insights into drag generation mechanisms.
R Soc Open Sci. 2023 Feb 1;10(2):220684. doi: 10.1098/rsos.220684. eCollection 2023 Feb.
10
Multi-scaling analysis of turbulent boundary layers over an isothermally heated flat plate with zero pressure gradient.
Heliyon. 2023 Nov 22;9(12):e22721. doi: 10.1016/j.heliyon.2023.e22721. eCollection 2023 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验