Suppr超能文献

用于快速和完全植入层层微针药物薄膜的合成可充电聚合物,以增强经皮疫苗接种。

Synthetic Charge-Invertible Polymer for Rapid and Complete Implantation of Layer-by-Layer Microneedle Drug Films for Enhanced Transdermal Vaccination.

机构信息

Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

出版信息

ACS Nano. 2018 Oct 23;12(10):10272-10280. doi: 10.1021/acsnano.8b05373. Epub 2018 Oct 4.

Abstract

The utility of layer-by-layer (LbL) coated microneedle (MN) skin patches for transdermal drug delivery has proven to be a promising approach, with advantages over hypodermal injection due to painless and easy self-administration. However, the long epidermal application time required for drug implantation by existing LbL MN strategies (15-90 min) can lead to potential medication noncompliance. Here, we developed a MN platform to shorten the application time in MN therapies based on a synthetic pH-induced charge-invertible polymer poly(2-(diisopropylamino) ethyl methacrylate- b-methacrylic acid) (PDM), requiring only 1 min skin insertion time to implant LbL films in vivo. Following MN-mediated delivery of 0.5 μg model antigen chicken ovalbumin (OVA) in the skin of mice, this system achieved sustained release over 3 days and led to an elevated immune response as demonstrated by significantly higher humoral immunity compared with OVA administration via conventional routes (subcutaneously and intramuscularly). Moreover, in an ex vivo experiment on human skin, we achieved efficient immune activation through MN-delivered LbL films, demonstrated by a rapid uptake of vaccine adjuvants by the antigen presenting cells. These features, rapid administration and the ability to elicit a robust immune response, can potentially enable a broad application of microneedle-based vaccination technologies.

摘要

层层(LbL)包被微针(MN)贴片在透皮药物输送方面的应用已被证明是一种很有前途的方法,与皮下注射相比具有无痛、易于自我给药的优势。然而,现有的 LbL MN 策略(15-90 分钟)用于药物植入所需的长表皮应用时间可能导致潜在的药物不依从。在这里,我们开发了一种 MN 平台,基于合成的 pH 诱导的电荷可逆聚合物聚(2-(二异丙基氨基)乙基甲基丙烯酸酯- b-甲基丙烯酸)(PDM),将 MN 疗法的应用时间缩短,只需 1 分钟的皮肤插入时间即可在体内植入 LbL 膜。在小鼠皮肤中经 MN 介导递送至 0.5 μg 模型抗原鸡卵清蛋白(OVA)后,该系统实现了长达 3 天的持续释放,并通过与通过常规途径(皮下和肌肉内)给药相比,显著提高了体液免疫反应,证明了其具有更高的免疫应答。此外,在人体皮肤的离体实验中,我们通过 MN 递送的 LbL 膜实现了有效的免疫激活,这可以通过抗原呈递细胞快速摄取疫苗佐剂来证明。这些特点,快速给药和引发强大免疫反应的能力,有可能使基于微针的疫苗接种技术得到广泛应用。

相似文献

2
A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice.
J Mater Chem B. 2020 Jan 14;8(2):216-225. doi: 10.1039/c9tb02061f. Epub 2019 Dec 5.
3
Micro-fractional epidermal powder delivery for improved skin vaccination.
J Control Release. 2014 Oct 28;192:310-6. doi: 10.1016/j.jconrel.2014.08.006. Epub 2014 Aug 15.
4
Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.
Eur J Pharm Biopharm. 2014 Oct;88(2):310-5. doi: 10.1016/j.ejpb.2014.05.003. Epub 2014 May 9.
5
Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy.
Biomaterials. 2018 Dec;185:13-24. doi: 10.1016/j.biomaterials.2018.09.008. Epub 2018 Sep 8.
6
Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant.
Int J Nanomedicine. 2017 Jul 4;12:4763-4772. doi: 10.2147/IJN.S132456. eCollection 2017.
7
Synthetic Lift-off Polymer beneath Layer-by-Layer Films for Surface-Mediated Drug Delivery.
ACS Macro Lett. 2017 Nov 21;6(11):1320-1324. doi: 10.1021/acsmacrolett.7b00584. Epub 2017 Nov 9.
9
Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy.
J Mater Chem B. 2020 Feb 14;8(6):1171-1181. doi: 10.1039/c9tb02175b. Epub 2020 Jan 20.
10
Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation.
Biomaterials. 2014 Sep;35(29):8385-93. doi: 10.1016/j.biomaterials.2014.05.067. Epub 2014 Jun 27.

引用本文的文献

1
Nanoimmunotherapy: the smart trooper for cancer therapy.
Explor Target Antitumor Ther. 2025 Apr 10;6:1002308. doi: 10.37349/etat.2025.1002308. eCollection 2025.
2
Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination.
Medicines (Basel). 2025 Feb 7;12(1):4. doi: 10.3390/medicines12010004.
3
Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications.
Adv Healthc Mater. 2024 Mar;13(8):e2302713. doi: 10.1002/adhm.202302713. Epub 2024 Jan 7.
4
Layer-by-Layer Nanoassemblies for Vaccination Purposes.
Pharmaceutics. 2023 May 10;15(5):1449. doi: 10.3390/pharmaceutics15051449.
5
Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope.
Research (Wash D C). 2023 Apr 28;6:0128. doi: 10.34133/research.0128. eCollection 2023.
8
Recent advancements in single dose slow-release devices for prophylactic vaccines.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Jan;15(1):e1832. doi: 10.1002/wnan.1832. Epub 2022 Jul 18.
9
Application of microneedle patches for drug delivery; doorstep to novel therapies.
J Tissue Eng. 2022 Apr 29;13:20417314221085390. doi: 10.1177/20417314221085390. eCollection 2022 Jan-Dec.

本文引用的文献

1
Synthetic Lift-off Polymer beneath Layer-by-Layer Films for Surface-Mediated Drug Delivery.
ACS Macro Lett. 2017 Nov 21;6(11):1320-1324. doi: 10.1021/acsmacrolett.7b00584. Epub 2017 Nov 9.
2
Peptide Amphiphile Micelle Vaccine Size and Charge Influence the Host Antibody Response.
ACS Biomater Sci Eng. 2018 Jul 9;4(7):2463-2472. doi: 10.1021/acsbiomaterials.8b00511. Epub 2018 May 21.
3
Instructive Design of Triblock Peptide Amphiphiles for Structurally Complex Micelle Fabrication.
ACS Biomater Sci Eng. 2018 Jul 9;4(7):2330-2339. doi: 10.1021/acsbiomaterials.8b00300. Epub 2018 May 17.
4
Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing.
ACS Nano. 2018 Jul 24;12(7):6504-6514. doi: 10.1021/acsnano.7b08777. Epub 2018 Jun 28.
5
A "top-down" approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery.
Biomaterials. 2018 Sep;176:122-130. doi: 10.1016/j.biomaterials.2018.05.043. Epub 2018 May 25.
6
Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2696-E2705. doi: 10.1073/pnas.1719565115. Epub 2018 Feb 5.
7
Polyamine-Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery.
Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13709-13712. doi: 10.1002/anie.201707466. Epub 2017 Sep 19.
10
Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers.
ACS Biomater Sci Eng. 2017 Feb 13;3(2):195-205. doi: 10.1021/acsbiomaterials.6b00414. Epub 2016 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验