Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, 22908, USA.
Med Phys. 2018 Dec;45(12):5535-5542. doi: 10.1002/mp.13223. Epub 2018 Oct 23.
Deformable image registration (DIR)-based lung ventilation mapping is attractive due to its simplicity, and also challenging due to its susceptibility to errors and uncertainties. In this study, we explored the use of 3D Hyperpolarized (HP) gas tagging MRI to evaluate DIR-based lung ventilation.
Three healthy volunteers included in this study underwent both 3D HP gas tagging MRI (t-MRI) and 3D proton MRI (p-MRI) using balanced steady-state free precession pulse sequence at end of inhalation and end of exhalation. We first obtained the reference displacement vector fields (DVFs) from the t-MRIs by tracking the motion of each tagging grid between the exhalation and the inhalation phases. Then, we determined DIR-based DVFs from the p-MRIs by registering the images at the two phases with two commercial DIR algorithms. Lung ventilations were calculated from both the reference DVFs and the DIR-based DVFs using the Jacobian method and then compared using cross correlation and mutual information.
The DIR-based lung ventilations calculated using p-MRI varied considerably from the reference lung ventilations based on t-MRI among all three subjects. The lung ventilations generated using Velocity AI were preferable for the better spatial homogeneity and accuracy compared to the ones using MIM, with higher average cross correlation (0.328 vs 0.262) and larger average mutual information (0.528 vs 0.323).
We demonstrated that different DIR algorithms resulted in different lung ventilation maps due to underlining differences in the DVFs. HP gas tagging MRI provides a unique platform for evaluating DIR-based lung ventilation.
基于形变图像配准(DIR)的肺通气成像具有操作简单的优点,但也存在误差和不确定性等挑战。在这项研究中,我们探索了使用三维(3D)极化(HP)气体标记 MRI 来评估基于 DIR 的肺通气。
本研究纳入了 3 名健康志愿者,他们均接受了 3D HP 气体标记 MRI(t-MRI)和 3D 质子 MRI(p-MRI)检查,采用平衡稳态自由进动脉冲序列,分别在吸气末和呼气末进行扫描。我们首先通过跟踪每个标记网格在呼气和吸气相之间的运动,从 t-MRIs 中获得参考位移向量场(DVF)。然后,我们使用两种商业 DIR 算法,通过将两个时相的图像进行配准,从 p-MRIs 中确定基于 DIR 的 DVF。使用雅可比方法,从参考 DVF 和基于 DIR 的 DVF 中计算肺通气量,然后使用互相关和互信息进行比较。
在所有 3 名受试者中,使用 p-MRI 计算的基于 DIR 的肺通气量与基于 t-MRI 的参考肺通气量有很大差异。与 MIM 相比,使用 Velocity AI 生成的肺通气量在空间均匀性和准确性方面更优,具有更高的平均互相关(0.328 比 0.262)和更大的平均互信息(0.528 比 0.323)。
我们证明了不同的 DIR 算法会导致不同的肺通气图,这是由于 DVF 存在潜在差异。HP 气体标记 MRI 为评估基于 DIR 的肺通气提供了独特的平台。