Suppr超能文献

寡聚聚乙烯吡咯烷酮:基于表型的个体基因组信息分析,以优先考虑寡基因疾病变异。

OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants.

机构信息

Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.

出版信息

Sci Rep. 2018 Oct 2;8(1):14681. doi: 10.1038/s41598-018-32876-3.

Abstract

An increasing number of disorders have been identified for which two or more distinct alleles in two or more genes are required to either cause the disease or to significantly modify its onset, severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of alleles underlying digenic and oligogenic diseases in individual whole exome or whole genome sequences. Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical or non-human model organism research can provide useful information and improve variant prioritization for genetic diseases. Additional background knowledge about interactions between genes can be utilized to identify sets of variants in different genes in the same individual which may then contribute to the overall disease phenotype. We have developed OligoPVP, an algorithm that can be used to prioritize causative combinations of variants in digenic and oligogenic diseases, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods in the case of digenic diseases. Our results show that OligoPVP can efficiently prioritize sets of variants in digenic diseases using a phenotype-driven approach and identify etiologically important variants in whole genomes. OligoPVP naturally extends to oligogenic disease involving interactions between variants in two or more genes. It can be applied to the identification of multiple interacting candidate variants contributing to phenotype, where the action of modifier genes is suspected from pedigree analysis or failure of traditional causative variant identification.

摘要

越来越多的疾病被确定为需要两个或更多基因中的两个或多个不同等位基因才能导致疾病或显著改变其发病、严重程度或表型。使用现有的方法很难发现这种相互作用。我们的工作目的是开发和评估一种系统,该系统可以识别个体全外显子或全基因组序列中双基因和寡基因疾病的潜在等位基因组合。将患者表型与临床或非人类模型生物研究中观察到的基因-表型关联数据库联系起来的信息可以提供有用的信息,并改善遗传疾病的变异优先级。关于基因之间相互作用的额外背景知识可用于识别同一个体中不同基因中的一组变体,这些变体可能会对整体疾病表型产生影响。我们已经开发了 OligoPVP,这是一种可以使用全外显子或全基因组序列以及患者表型作为输入来优先考虑双基因和寡基因疾病中变异的因果组合的算法。我们证明,与双基因疾病的最先进致病性检测方法相比,OligoPVP 的性能有了显著提高。我们的结果表明,OligoPVP 可以使用表型驱动的方法有效地对双基因疾病中的变体集进行优先级排序,并识别全基因组中具有重要病因的变体。OligoPVP 自然扩展到涉及两个或更多基因中变体相互作用的寡基因疾病。它可用于鉴定多个相互作用的候选变体,这些变体可能会影响表型,其作用是通过系谱分析或传统因果变异识别失败来怀疑修饰基因的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f132/6168481/dc1a4718ada6/41598_2018_32876_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验