Suppr超能文献

采用混合设计法开发腰果样品制备程序,并利用科恩神经网络评估营养成分分布。

Development of procedure for sample preparation of cashew nuts using mixture design and evaluation of nutrient profiles by Kohonen neural network.

机构信息

Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado- Km 16 BR 415, CEP 45662-900, Salobrinho, Ilhéus, Bahia, Brazil; Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, CEP 81530-900, Jardim das Américas, Curitiba, Paraná, Brazil.

Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado- Km 16 BR 415, CEP 45662-900, Salobrinho, Ilhéus, Bahia, Brazil; Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Avenida Senador Salgado Filho - 3000, CEP 59064-741, Lagoa Nova, Natal, Rio Grande do Norte, Brazil.

出版信息

Food Chem. 2019 Feb 1;273:136-143. doi: 10.1016/j.foodchem.2018.01.050. Epub 2018 Jan 6.

Abstract

A procedure using ICP OES for sample preparation for the determination of copper, iron and manganese in cashew nuts was developed. Constrained simplex-centroid design was applied in the optimization of the digestion in microwave oven procedure, and the results evaluated from topological maps of the Kohonen network. The best proportion evaluated for the digestion of the sample with HNO, HO and HO was 10:45:45 (%). With optimized conditions, the detection limits were 0.63, 4.3 and 0.37 mg kg, and quantification 2.1, 14 and 1.2 mg kg for Cu, Fe and Mg, respectively. The precision (% RSD) was 1.84, 2.31 and 2.73, for Cu, Fe and Mg, respectively. The procedure proposed had the accuracy confirmed using NIST 1568b (at 95% reliability) and was applied in the samples obtaining concentrations in the range of 10.7-19.4, 44.3-67.2 and 11.0-21.4 mg kg for Cu, Fe and Mg, respectively.

摘要

建立了一种使用电感耦合等离子体发射光谱法(ICP-OES)对腰果中铜、铁和锰进行样品制备的方法。在微波消解过程的优化中应用了约束单纯形质心法设计,并从 Kohonen 网络的拓扑图中评估结果。评估的最佳样品消化比例为 HNO3、HO 和 HO 的 10:45:45(%)。在优化条件下,Cu、Fe 和 Mg 的检测限分别为 0.63、4.3 和 0.37mg/kg,定量限分别为 2.1、14 和 1.2mg/kg。Cu、Fe 和 Mg 的精密度(%RSD)分别为 1.84、2.31 和 2.73。该方法的准确性已使用 NIST 1568b(在 95%置信度下)进行了验证,并应用于样品中,得到 Cu、Fe 和 Mg 的浓度范围分别为 10.7-19.4、44.3-67.2 和 11.0-21.4mg/kg。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验