Suppr超能文献

基于胶囊网络架构解码模型从人类功能磁共振成像中准确重建图像刺激

Accurate Reconstruction of Image Stimuli From Human Functional Magnetic Resonance Imaging Based on the Decoding Model With Capsule Network Architecture.

作者信息

Qiao Kai, Zhang Chi, Wang Linyuan, Chen Jian, Zeng Lei, Tong Li, Yan Bin

机构信息

National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China.

出版信息

Front Neuroinform. 2018 Sep 20;12:62. doi: 10.3389/fninf.2018.00062. eCollection 2018.

Abstract

In neuroscience, all kinds of computation models were designed to answer the open question of how sensory stimuli are encoded by neurons and conversely, how sensory stimuli can be decoded from neuronal activities. Especially, functional Magnetic Resonance Imaging (fMRI) studies have made many great achievements with the rapid development of deep network computation. However, comparing with the goal of decoding orientation, position and object category from human fMRI in visual cortex, accurate reconstruction of image stimuli is a still challenging work. Current prevailing methods were composed of two independent steps, (1) decoding intermediate features from human fMRI and (2) reconstruction using the decoded intermediate features. The new concept of 'capsule' and 'capsule' based neural network were proposed recently. The 'capsule' represented a kind of structure containing a group of neurons to perform better feature representation. Especially, the high-level capsule's features in the capsule network (CapsNet) contains various features of image stimuli such as semantic class, orientation, location, scale and so on, and these features can better represent the processed information inherited in the fMRI data collected in visual cortex. In this paper, a novel CapsNet architecture based visual reconstruction (CNAVR) computation model is developed to reconstruct image stimuli from human fMRI. The CNAVR is composed of linear encoding computation from capsule's features to fMRI data and inverse reconstruction computation. In the first part, we trained the CapsNet model to obtain the non-linear mappings from images to high-level capsule's features, and from high-level capsule's features to images again in an end-to-end manner. In the second part, we trained the non-linear mapping from fMRI data of selected voxels to high-level capsule's features. For a new image stimulus, we can use the method to predict the corresponding high-level capsule's features using fMRI data, and reconstruct image stimuli with the trained reconstruction part in the CapsNet. We evaluated the proposed CNAVR method on the open dataset of handwritten digital images, and exceeded about 10% than the accuracy of all existing state-of-the-art methods on the structural similarity index (SSIM). In addition, we explained the selected voxels in specific interpretable image features to prove the effectivity and generalization of the CNAVR method.

摘要

在神经科学领域,人们设计了各种计算模型来回答有关神经元如何编码感觉刺激,以及反过来如何从神经元活动中解码感觉刺激的开放性问题。特别是,随着深度网络计算的迅速发展,功能磁共振成像(fMRI)研究取得了许多重大成果。然而,与从人类视觉皮层的fMRI中解码方向、位置和物体类别这一目标相比,准确重建图像刺激仍然是一项具有挑战性的工作。当前流行的方法由两个独立步骤组成:(1)从人类fMRI中解码中间特征;(2)使用解码后的中间特征进行重建。最近提出了“胶囊”和基于“胶囊”的神经网络的新概念。“胶囊”代表一种包含一组神经元的结构,以实现更好的特征表示。特别是,胶囊网络(CapsNet)中的高级胶囊特征包含图像刺激的各种特征,如图语义类别、方向、位置、比例等,这些特征可以更好地表示视觉皮层中收集的fMRI数据中继承的处理信息。在本文中,我们开发了一种基于新型CapsNet架构的视觉重建(CNAVR)计算模型,用于从人类fMRI中重建图像刺激。CNAVR由从胶囊特征到fMRI数据的线性编码计算和逆重建计算组成。在第一部分中,我们训练CapsNet模型以获得从图像到高级胶囊特征以及从高级胶囊特征到图像的端到端非线性映射。在第二部分中,我们训练从选定体素的fMRI数据到高级胶囊特征的非线性映射。对于新图像刺激,我们可以使用该方法利用fMRI数据预测相应的高级胶囊特征,并使用CapsNet中训练好的重建部分重建图像刺激。我们在手写数字图像的开放数据集上评估了所提出的CNAVR方法,在结构相似性指数(SSIM)上比所有现有最先进方法的准确率高出约1〇%。此外,我们在特定可解释图像特征中解释了选定的体素,以证明CNAVR方法的有效性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e54f/6158374/a76a5e1e6e69/fninf-12-00062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验