Witman Matthew, Mahynski Nathan A, Smit Berend
Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States.
Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland.
J Chem Theory Comput. 2018 Dec 11;14(12):6149-6158. doi: 10.1021/acs.jctc.8b00534. Epub 2018 Nov 27.
Monte Carlo simulations are the foundational technique for predicting thermodynamic properties of open systems where the process of interest involves the exchange of particles. Thus, they have been used extensively to computationally evaluate the adsorption properties of nanoporous materials and are critical for the in silico identification of promising materials for a variety of gas storage and chemical separation applications. In this work we demonstrate that a well-known biasing technique, known as "flat-histogram" sampling, can be combined with temperature extrapolation of the free energy landscape to efficiently provide significantly more useful thermodynamic information than standard open ensemble MC simulations. Namely, we can accurately compute the isosteric heat of adsorption and number of particles adsorbed for various adsorbates over an extremely wide range of temperatures and pressures from a set of simulations at just one temperature. We extend this derivation of the temperature extrapolation to adsorbates with intramolecular degrees of freedom when Rosenbluth sampling is employed. Consequently, the working capacity and isosteric heat can be computed for any given combined temperature/pressure swing adsorption process for a large range of operating conditions with both rigid and deformable adsorbates. Continuous thermodynamic properties can be computed with this technique at very moderate computational cost, thereby providing a strong case for its application to the in silico identification of promising nanoporous adsorbents.
蒙特卡罗模拟是预测开放系统热力学性质的基础技术,其中感兴趣的过程涉及粒子交换。因此,它们已被广泛用于通过计算评估纳米多孔材料的吸附特性,并且对于在计算机上识别适用于各种气体存储和化学分离应用的有前景的材料至关重要。在这项工作中,我们证明了一种著名的偏差技术,即“平直方图”采样,可以与自由能景观的温度外推相结合,以比标准开放系综蒙特卡罗模拟更有效地提供明显更有用的热力学信息。具体而言,我们可以从仅在一个温度下的一组模拟中,在极宽的温度和压力范围内准确计算各种吸附质的等量吸附热和吸附的粒子数。当采用罗森布鲁斯采样时,我们将这种温度外推的推导扩展到具有分子内自由度的吸附质。因此,对于具有刚性和可变形吸附质的大范围操作条件下的任何给定组合温度/压力变压吸附过程,可以计算工作容量和等量吸附热。使用该技术可以以非常适中的计算成本计算连续的热力学性质,从而为其应用于在计算机上识别有前景的纳米多孔吸附剂提供了有力的依据。