Suppr超能文献

Dicer-2 调控对寨卡病毒感染的抗性并维持其体内平衡。

Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in .

机构信息

Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and.

Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052.

出版信息

J Immunol. 2018 Nov 15;201(10):3058-3072. doi: 10.4049/jimmunol.1800597. Epub 2018 Oct 10.

Abstract

Zika virus (ZIKV) outbreaks pose a massive public health threat in several countries. We have developed an in vivo model to investigate the host-ZIKV interaction in We have found that a strain of ZIKV replicates in wild-type flies without reducing their survival ability. We have shown that ZIKV infection triggers RNA interference and that mutating results in enhanced ZIKV load and increased susceptibility to ZIKV infection. Using a flavivirus-specific Ab, we have found that ZIKV is localized in the gut and fat body cells of the infected wild-type flies and results in their perturbed homeostasis. In addition, mutants display severely reduced insulin activity, which could contribute toward the increased mortality of these flies. Our work establishes the suitability of as the model system to study host-ZIKV dynamics, which is expected to greatly advance our understanding of the molecular and physiological processes that determine the outcome of this disease.

摘要

寨卡病毒(ZIKV)爆发对多个国家的公共卫生构成了巨大威胁。我们开发了一种体内模型来研究宿主与 ZIKV 的相互作用。我们发现,一种 ZIKV 株在野生型果蝇中复制而不降低其生存能力。我们表明,ZIKV 感染触发 RNA 干扰,并且突变导致 ZIKV 载量增加和对 ZIKV 感染的敏感性增加。使用黄病毒特异性 Ab,我们发现 ZIKV 定位于感染的野生型果蝇的肠道和脂肪体细胞中,并导致其体内平衡受到干扰。此外,突变体显示胰岛素活性严重降低,这可能导致这些果蝇的死亡率增加。我们的工作确立了 作为研究宿主-ZIKV 动态的模型系统的适用性,预计将极大地促进我们对决定这种疾病结局的分子和生理过程的理解。

相似文献

1
Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in .
J Immunol. 2018 Nov 15;201(10):3058-3072. doi: 10.4049/jimmunol.1800597. Epub 2018 Oct 10.
2
Zika Virus Induces Sex-Dependent Metabolic Changes in to Promote Viral Replication.
Front Immunol. 2022 Jun 30;13:903860. doi: 10.3389/fimmu.2022.903860. eCollection 2022.
3
Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila.
J Immunol. 2013 Jan 15;190(2):650-8. doi: 10.4049/jimmunol.1102486. Epub 2012 Dec 19.
4
Immune priming and clearance of orally acquired RNA viruses in Drosophila.
Nat Microbiol. 2018 Dec;3(12):1394-1403. doi: 10.1038/s41564-018-0265-9. Epub 2018 Oct 29.
5
Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila.
Nat Immunol. 2006 Jun;7(6):590-7. doi: 10.1038/ni1335. Epub 2006 Mar 23.
6
Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain.
Cell Host Microbe. 2018 Jul 11;24(1):57-68.e3. doi: 10.1016/j.chom.2018.05.022. Epub 2018 Jun 19.
7
STING'ing Zika virus in neurons.
Nat Microbiol. 2018 Sep;3(9):975-976. doi: 10.1038/s41564-018-0232-5.
8
A New Model to Study Protective Immunity to Zika Virus Infection in Mice With Intact Type I Interferon Signaling.
Front Immunol. 2018 Mar 22;9:593. doi: 10.3389/fimmu.2018.00593. eCollection 2018.
9
Sustained Specific and Cross-Reactive T Cell Responses to Zika and Dengue Virus NS3 in West Africa.
J Virol. 2018 Mar 14;92(7). doi: 10.1128/JVI.01992-17. Print 2018 Apr 1.
10
A Zika virus protein expression screen in Drosophila to investigate targeted host pathways during development.
Dis Model Mech. 2024 Feb 1;17(2). doi: 10.1242/dmm.050297. Epub 2024 Feb 28.

引用本文的文献

2
endosymbionts in regulate the resistance to Zika virus infection in a sex dependent manner.
Front Microbiol. 2024 Jun 5;15:1380647. doi: 10.3389/fmicb.2024.1380647. eCollection 2024.
3
The Drosophila melanogaster prophenoloxidase system participates in immunity against Zika virus infection.
Eur J Immunol. 2023 Dec;53(12):e2350632. doi: 10.1002/eji.202350632. Epub 2023 Oct 11.
4
Imd signaling interacts with insulin signaling and alters feeding rate upon parasitic nematode infection.
Heliyon. 2023 May 18;9(5):e16139. doi: 10.1016/j.heliyon.2023.e16139. eCollection 2023 May.
5
Influence of RVFV Infection on Olfactory Perception and Behavior in .
Pathogens. 2023 Apr 5;12(4):558. doi: 10.3390/pathogens12040558.
6
Temperature and sex shape Zika virus pathogenicity in the adult brain: A model for virus-associated neurological diseases.
iScience. 2023 Mar 16;26(4):106424. doi: 10.1016/j.isci.2023.106424. eCollection 2023 Apr 21.
7
Insulin-mediated endothelin signaling is antiviral during West Nile virus infection.
bioRxiv. 2023 Jan 18:2023.01.17.524426. doi: 10.1101/2023.01.17.524426.
8
Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches.
Front Cell Infect Microbiol. 2022 Oct 13;12:976843. doi: 10.3389/fcimb.2022.976843. eCollection 2022.
9
Zika Virus Induces Sex-Dependent Metabolic Changes in to Promote Viral Replication.
Front Immunol. 2022 Jun 30;13:903860. doi: 10.3389/fimmu.2022.903860. eCollection 2022.
10
Coupled small molecules target RNA interference and JAK/STAT signaling to reduce Zika virus infection in Aedes aegypti.
PLoS Pathog. 2022 Apr 4;18(4):e1010411. doi: 10.1371/journal.ppat.1010411. eCollection 2022 Apr.

本文引用的文献

1
Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain.
Cell Host Microbe. 2018 Jul 11;24(1):57-68.e3. doi: 10.1016/j.chom.2018.05.022. Epub 2018 Jun 19.
2
Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus.
PLoS Negl Trop Dis. 2018 May 21;12(5):e0006498. doi: 10.1371/journal.pntd.0006498. eCollection 2018 May.
3
Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.
PLoS Pathog. 2018 Feb 15;14(2):e1006853. doi: 10.1371/journal.ppat.1006853. eCollection 2018 Feb.
4
Global Transcriptome Analysis of Mosquitoes in Response to Zika Virus Infection.
mSphere. 2017 Nov 22;2(6). doi: 10.1128/mSphere.00456-17. eCollection 2017 Nov-Dec.
5
Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors.
Front Microbiol. 2017 Oct 23;8:2050. doi: 10.3389/fmicb.2017.02050. eCollection 2017.
6
Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.
PLoS Negl Trop Dis. 2017 Oct 17;11(10):e0006010. doi: 10.1371/journal.pntd.0006010. eCollection 2017 Oct.
7
Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes.
PLoS Negl Trop Dis. 2017 Jul 17;11(7):e0005760. doi: 10.1371/journal.pntd.0005760. eCollection 2017 Jul.
8
Drosophila microRNA modulates viral replication by targeting a homologue of mammalian cJun.
J Gen Virol. 2017 Jul;98(7):1904-1912. doi: 10.1099/jgv.0.000831. Epub 2017 Jul 8.
9
In Vitro Assembly and Stabilization of Dengue and Zika Virus Envelope Protein Homo-Dimers.
Sci Rep. 2017 Jul 3;7(1):4524. doi: 10.1038/s41598-017-04767-6.
10
The structure of Zika virus NS5 reveals a conserved domain conformation.
Nat Commun. 2017 Mar 27;8:14763. doi: 10.1038/ncomms14763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验