Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan.
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan.
Structure. 2019 Jan 2;27(1):152-160.e3. doi: 10.1016/j.str.2018.09.005. Epub 2018 Oct 11.
Membrane proteins play important roles in various cellular functions. To analyze membrane proteins, nanodisc technology using membrane scaffold proteins allows single membrane protein units to be embedded into the lipid bilayer disc without detergents. Recent advancements in high-speed atomic force microscopy (HS-AFM) have enabled us to monitor the real-time dynamics of proteins in solution at the nanometer scale. In this study, we report HS-AFM imaging of membrane proteins reconstituted into nanodiscs using two membrane protein complexes, SecYEG complex and MgtE dimer. The observed images showed single particles of membrane protein-embedded nanodiscs in an end-up orientation whereby the membrane was fixed parallel to the supporting solid surface and in a side-on orientation whereby the membrane plane was vertically fixed to the solid surface, enabling the elucidation of domain fluctuations in membrane proteins. This technique provides a basic method for the high-resolution imaging of single membrane proteins by HS-AFM.
膜蛋白在各种细胞功能中发挥着重要作用。为了分析膜蛋白,使用膜支架蛋白的纳米盘技术可以将单个膜蛋白单元嵌入到没有去污剂的脂质双层盘中。最近高速原子力显微镜(HS-AFM)的进展使我们能够在纳米尺度上实时监测溶液中蛋白质的动力学。在这项研究中,我们报告了使用两种膜蛋白复合物,SecYEG 复合物和 MgtE 二聚体,将重组到纳米盘中的膜蛋白的 HS-AFM 成像。观察到的图像显示了膜蛋白嵌入纳米盘的单个颗粒,呈端向上取向,其中膜平行于支撑固体表面固定,呈侧向上取向,其中膜平面垂直于固体表面固定,从而能够阐明膜蛋白中的结构域波动。该技术为 HS-AFM 对单个膜蛋白的高分辨率成像提供了一种基本方法。