b Department of Occupational Health , Third Military Medical University , Chongqing , China.
c Department of Aerospace Medicine , Fourth Military Medical University , Xi'an , China.
Autophagy. 2019 Apr;15(4):565-582. doi: 10.1080/15548627.2018.1531198. Epub 2018 Oct 20.
Cadmium (Cd) is a toxic metal that is widely found in numerous environmental matrices and induces serious adverse effects in various organs and tissues. Bone tissue seems to be a crucial target of Cd contamination. Macroautophagy/autophagy has been proposed to play a pivotal role in Cd-mediated bone toxicity. However, the mechanisms that underlie Cd-induced autophagy are not yet completely understood. We demonstrated that Cd treatment increased autophagic flux and inhibition of the autophagic process using Atg7 gene silencing blocked the Cd-induced mesenchymal stem cell death. Mechanistically, Cd activated nuclear translocation of TFE3 but not that of TFEB or MITF, which contributed to the expression of autophagy-related genes and lysosomal biogenesis. Specifically, Cd decreased expression of phospho-AKT (Ser473). The reduction in AKT activity led to dephosphorylation of cytosolic TFE3 at Ser565 and promoted TFE3 nuclear translocation independently of MTORC1. Notably, Cd treatment increased the activity of PPP3/calcineurin, and pharmacological inhibition of PPP3/calcineurin with FK506 suppressed AKT dephosphorylation and TFE3 activity. These results suggest that PPP3/calcineurin negatively regulates AKT phosphorylation and is involved in Cd-induced TFE3-dependent autophagy. Modulation of the PPP3/calcineurin-AKT-TFE3 autophagic-lysosomal machinery may offer novel therapeutic approaches for the treatment of Cd-induced bone damage. Abbreviations: ACTB: actin: beta; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; ATG: autophagy related; Baf A1: bafilomycin A; Cd: cadmium; FOXO3: forkhead box O3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MITF: melanogenesis associated transcription factor; MSC: mesenchymal stem sell; MTORC1: mechanistic target of rapamycin kinase complex 1; RPS6KB1: ribosomal protein S6 kinase: polypeptide 1; SGK1: serum/glucocorticoid regulated kinase 1; SQSTM1/p62: sequestosome 1;TFE3: transcription factor E3; TFEB: transcription factor EB; TFEC: transcription factor EC.
镉 (Cd) 是一种广泛存在于多种环境基质中的有毒金属,会对各种器官和组织造成严重的不良影响。骨组织似乎是镉污染的一个关键靶标。自噬/巨自噬被认为在 Cd 介导的骨毒性中发挥关键作用。然而,Cd 诱导自噬的机制尚不完全清楚。我们证明,Cd 处理增加了自噬流,并且使用 Atg7 基因沉默抑制自噬过程可阻断 Cd 诱导的间充质干细胞死亡。在机制上,Cd 激活了 TFE3 的核易位,但不激活 TFEB 或 MITF 的核易位,这有助于自噬相关基因和溶酶体生物发生的表达。具体来说,Cd 降低了磷酸化 AKT(Ser473)的表达。AKT 活性的降低导致细胞质 TFE3 在 Ser565 去磷酸化,并独立于 MTORC1 促进 TFE3 核易位。值得注意的是,Cd 处理增加了 PPP3/calcineurin 的活性,并且使用 FK506 抑制 PPP3/calcineurin 的药理学抑制作用可抑制 AKT 去磷酸化和 TFE3 活性。这些结果表明,PPP3/calcineurin 负调节 AKT 磷酸化,并参与 Cd 诱导的 TFE3 依赖性自噬。调节 PPP3/calcineurin-AKT-TFE3 自噬-溶酶体机制可能为治疗 Cd 诱导的骨损伤提供新的治疗方法。缩写:ACTB:肌动蛋白:β;AKT:胸腺瘤病毒原癌基因;AMPK:AMP 激活的蛋白激酶;ATG:自噬相关;Baf A1:巴弗霉素 A;Cd:镉;FOXO3:叉头框 O3;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MITF:黑色素生成相关转录因子;MSC:间充质干细胞;MTORC1:雷帕霉素激酶复合物 1 的机制靶标;RPS6KB1:核糖体蛋白 S6 激酶:多肽 1;SGK1:血清/糖皮质激素调节激酶 1;SQSTM1/p62:自噬体 1;TFE3:转录因子 E3;TFEB:转录因子 EB;TFEC:转录因子 EC。