Suppr超能文献

实时在线识别机器人胫骨假肢截肢者的连续运动模式。

Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2015-2025. doi: 10.1109/TNSRE.2018.2870152.

Abstract

Human intent recognition is important to the control of robotic prosthesis. In this paper, we propose a multi-level real-time on-board system to recognize continuous locomotion modes. A cascaded classification strategy is designed for the recognition of six steady locomotion modes and 10 transitions. On-board signals of the robotic prosthesis include two inertial measurement units and one load cell. Three transtibial amputees are recruited in the experiments. The prediction decision time of the real-time on-board cascaded classification system is about 3.3 ms, which is enough short compared with the sliding window increment 10 ms. It is easy to recognize the standing and ambulation in the first-level classification with a 99.86% accuracy by quadratic discriminant analysis (QDA) classifier. In the second-level classification, threshold method is adopted to divide one stride into swing and stance phases. In swing phase, five steady modes are recognized with a total accuracy of 96.40%. In stance phase, all these five steady modes are recognized with a total accuracy of 91.21%. The average recognition accuracy of the three subjects is 93.21% by QDA classifier. Besides, for transitions, the proposed system could recognize all transitions rightly. The designed system is feasible and effective to realize real-time on-board recognition of continuous locomotion modes, which is promising for the further control of the prosthesis.

摘要

人类意图识别对于机器人假肢的控制很重要。在本文中,我们提出了一种多级实时板载系统来识别连续的运动模式。设计了级联分类策略来识别六种稳定的运动模式和十种过渡模式。机器人假肢的板载信号包括两个惯性测量单元和一个负载单元。实验中招募了三名胫骨截肢者。实时板载级联分类系统的预测决策时间约为 3.3 毫秒,与 10 毫秒的滑动窗口增量相比足够短。通过二次判别分析(QDA)分类器,很容易在一级分类中以 99.86%的准确率识别站立和行走。在二级分类中,采用阈值方法将一步分为摆动和站立阶段。在摆动阶段,用总准确率为 96.40%识别五种稳定模式。在站立阶段,用总准确率为 91.21%识别所有这五种稳定模式。通过 QDA 分类器,三个受试者的平均识别准确率为 93.21%。此外,对于过渡模式,所提出的系统可以正确识别所有过渡模式。所设计的系统可实现连续运动模式的实时板载识别,对于假肢的进一步控制具有很大的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验