Suppr超能文献

色彩量表对气候科学家在空间数据分析任务中的客观和主观表现的影响。

The Effect of Color Scales on Climate Scientists' Objective and Subjective Performance in Spatial Data Analysis Tasks.

出版信息

IEEE Trans Vis Comput Graph. 2020 Mar;26(3):1577-1591. doi: 10.1109/TVCG.2018.2876539. Epub 2018 Oct 17.

Abstract

Geographical maps encoded with rainbow color scales are widely used by climate scientists. Despite a plethora of evidence from the visualization and vision sciences literature about the shortcomings of the rainbow color scale, they continue to be preferred over perceptually optimal alternatives. To study and analyze this mismatch between theory and practice, we present a web-based user study that compares the effect of color scales on performance accuracy for climate-modeling tasks. In this study, we used pairs of continuous geographical maps generated using climatological metrics for quantifying pairwise magnitude difference and spatial similarity. For each pair of maps, 39 scientist-observers judged: i) the magnitude of their difference, ii) their degree of spatial similarity, and iii) the region of greatest dissimilarity between them. Besides the rainbow color scale, two other continuous color scales were chosen such that all three of them covaried two dimensions (luminance monotonicity and hue banding), hypothesized to have an impact on task performance. We also analyzed subjective performance measures, such as user confidence, perceived accuracy, preference, and familiarity in using the different color scales. We found that monotonic luminance scales produced significantly more accurate judgments of magnitude difference but were not superior in spatial comparison tasks, and that hue banding had differential effects based on the task and conditions. Scientists expressed the highest preference and perceived confidence and accuracy with the rainbow, despite its poor performance on the magnitude comparison tasks. We also report on interesting interactions among stimulus conditions, tasks, and color scales, that lead to open research questions.

摘要

地理图以彩虹色标编码,被气候科学家广泛使用。尽管从可视化和视觉科学文献中已经有大量证据表明彩虹色标存在缺陷,但它们仍然优先于感知上更优的替代方案。为了研究和分析理论与实践之间的这种不匹配,我们提出了一项基于网络的用户研究,比较了不同色标对气候模型任务性能准确性的影响。在这项研究中,我们使用了基于气候学指标生成的连续地理图对,用于量化成对的大小差异和空间相似性。对于每对地图,39 位科学家观察员判断:i)它们之间差异的大小,ii)它们的空间相似程度,以及 iii)它们之间差异最大的区域。除了彩虹色标外,我们还选择了另外两种连续色标,以便它们三个都能共变两个维度(亮度单调性和色调带),假设这两个维度会影响任务表现。我们还分析了主观绩效衡量标准,例如用户信心、感知准确性、偏好和使用不同色标时的熟悉程度。我们发现,单调亮度标度在大小差异的判断上产生了更准确的结果,但在空间比较任务中并不占优势,并且色调带在基于任务和条件方面具有不同的影响。尽管彩虹色标在大小比较任务中的表现不佳,但科学家们表示他们最偏好并认为其具有最高的信心和准确性。我们还报告了刺激条件、任务和色标之间的有趣交互作用,这些交互作用引发了一些需要进一步研究的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验