Suppr超能文献

实现快速且高质量的LED光声成像:一种基于循环神经网络的方法。

Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach.

作者信息

Anas Emran Mohammad Abu, Zhang Haichong K, Kang Jin, Boctor Emad

机构信息

Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Biomed Opt Express. 2018 Jul 25;9(8):3852-3866. doi: 10.1364/BOE.9.003852. eCollection 2018 Aug 1.

Abstract

Photoacoustic (PA) techniques have shown promise in the imaging of tissue chromophores and exogenous contrast agents in various clinical applications. However, the key drawback of current PA technology is its dependence on a complex and hazardous laser system for the excitation of a tissue sample. Although light-emitting diodes (LED) have the potential to replace the laser, the image quality of an LED-based system is severely corrupted due to the low output power of LED elements. The current standard way to improve the quality is to increase the scanning time, which leads to a reduction in the imaging speed and makes the images prone to motion artifacts. To address the challenges of longer scanning time and poor image quality, in this work we present a deep neural networks based approach that exploits the temporal information in PA images using a recurrent neural network. We train our network using 32 phantom experiments; on the test set of 30 phantom experiments, we achieve a gain in the frame rate of 8 times with a mean peak-signal-to-noise-ratio of 35.4 dB compared to the standard technique.

摘要

光声(PA)技术在各种临床应用中对组织发色团和外源性造影剂成像方面已展现出前景。然而,当前PA技术的关键缺点在于其依赖复杂且危险的激光系统来激发组织样本。尽管发光二极管(LED)有潜力取代激光,但基于LED的系统的图像质量因LED元件的低输出功率而严重受损。当前提高质量的标准方法是增加扫描时间,这会导致成像速度降低,并使图像容易出现运动伪影。为应对更长扫描时间和图像质量差的挑战,在这项工作中,我们提出一种基于深度神经网络的方法,该方法使用循环神经网络利用PA图像中的时间信息。我们使用32次体模实验训练我们的网络;在30次体模实验的测试集上,与标准技术相比,我们实现了8倍的帧率提升,平均峰值信噪比为35.4 dB。

相似文献

1
Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach.
Biomed Opt Express. 2018 Jul 25;9(8):3852-3866. doi: 10.1364/BOE.9.003852. eCollection 2018 Aug 1.
2
Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source.
Biomed Opt Express. 2022 Nov 14;13(12):6416-6430. doi: 10.1364/BOE.471198. eCollection 2022 Dec 1.
3
U-Net enhanced real-time LED-based photoacoustic imaging.
J Biophotonics. 2024 Jun;17(6):e202300465. doi: 10.1002/jbio.202300465. Epub 2024 Apr 15.
5
Light Emitting Diodes based Photoacoustic Imaging and Potential Clinical Applications.
Sci Rep. 2018 Jun 29;8(1):9885. doi: 10.1038/s41598-018-28131-4.
9
Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets.
Photoacoustics. 2022 Apr 7;26:100351. doi: 10.1016/j.pacs.2022.100351. eCollection 2022 Jun.
10
Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
Magn Reson Med. 2019 Sep;82(3):901-910. doi: 10.1002/mrm.27772. Epub 2019 Apr 22.

引用本文的文献

2
Nanomaterial-Based Molecular Imaging in Cancer: Advances in Simulation and AI Integration.
Biomolecules. 2025 Mar 20;15(3):444. doi: 10.3390/biom15030444.
3
U-Net enhanced real-time LED-based photoacoustic imaging.
J Biophotonics. 2024 Jun;17(6):e202300465. doi: 10.1002/jbio.202300465. Epub 2024 Apr 15.
4
Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation.
J Biophotonics. 2024 Mar;17(3):e202300347. doi: 10.1002/jbio.202300347. Epub 2024 Jan 3.
5
4D spectral-spatial computational photoacoustic dermoscopy.
Photoacoustics. 2023 Nov 10;34:100572. doi: 10.1016/j.pacs.2023.100572. eCollection 2023 Dec.
6
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Dec;70(12):1591-1606. doi: 10.1109/TUFFC.2023.3329119. Epub 2023 Dec 14.
7
Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast.
Photoacoustics. 2023 Jul 17;32:100533. doi: 10.1016/j.pacs.2023.100533. eCollection 2023 Aug.
8
Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging deep CNN prior.
Photoacoustics. 2023 Apr 1;30:100484. doi: 10.1016/j.pacs.2023.100484. eCollection 2023 Apr.
9
Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source.
Biomed Opt Express. 2022 Nov 14;13(12):6416-6430. doi: 10.1364/BOE.471198. eCollection 2022 Dec 1.
10
Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends.
Front Physiol. 2022 Oct 19;13:1036621. doi: 10.3389/fphys.2022.1036621. eCollection 2022.

本文引用的文献

1
Deep learning for photoacoustic tomography from sparse data.
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.
2
The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging.
Photoacoustics. 2017 Nov 26;9:10-20. doi: 10.1016/j.pacs.2017.11.001. eCollection 2018 Mar.
3
Contrast agents for molecular photoacoustic imaging.
Nat Methods. 2016 Jul 28;13(8):639-50. doi: 10.1038/nmeth.3929.
4
High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.
Biomed Opt Express. 2016 Mar 14;7(4):1260-70. doi: 10.1364/BOE.7.001260. eCollection 2016 Apr 1.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
7
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Biomedical photoacoustic imaging.
Interface Focus. 2011 Aug 6;1(4):602-31. doi: 10.1098/rsfs.2011.0028. Epub 2011 Jun 22.
10
Advances in Clinical and Biomedical Applications of Photoacoustic Imaging.
Expert Opin Med Diagn. 2010 Nov 1;4(6):497-510. doi: 10.1517/17530059.2010.529127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验