Fennouri Aziz, Ramiandrisoa Joana, Bacri Laurent, Mathé Jérôme, Daniel Régis
Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025, Evry, France.
Eur Phys J E Soft Matter. 2018 Oct 23;41(10):127. doi: 10.1140/epje/i2018-11733-5.
Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and -hemolysin nanopores. We show that pores of similar channel length and diameter lead to distinct translocation behavior of the same macromolecules, due to different structural properties of the nanopores. When passing from the vestibule side of the nanopores, short hyaluronic acid oligosaccharides could be detected during their translocation across an aerolysin nanopore but not across an -hemolysin nanopore. We were however able to detect longer oligosaccharide fragments, resulting from the in situ enzymatic depolymerization of hyaluronic acid polysaccharides, with both nanopores, meaning that short oligosaccharides were crossing the -hemolysin nanopore with a speed too high to be detected. The translocation speed was an order of magnitude higher across -hemolysin compared to aerolysin. These results show that the choice of a nanopore to be used for resistive pulse sensing experiments should not rely only on the diameter of the channel but also on other parameters such as the charge repartition within the pore lumen.
为了寻找分析糖胺聚糖的新工具,我们比较了使用气单胞菌溶素和α-溶血素纳米孔时透明质酸中阴离子寡糖的转运情况。我们发现,由于纳米孔的结构特性不同,通道长度和直径相似的孔会导致相同大分子的转运行为截然不同。当从纳米孔的前庭侧通过时,短链透明质酸寡糖在穿过气单胞菌溶素纳米孔的过程中可以被检测到,但穿过α-溶血素纳米孔时则检测不到。然而,我们能够用这两种纳米孔检测到由透明质酸多糖原位酶解产生的较长寡糖片段,这意味着短寡糖穿过α-溶血素纳米孔的速度太快而无法被检测到。与气单胞菌溶素相比,α-溶血素的转运速度高出一个数量级。这些结果表明,用于电阻脉冲传感实验的纳米孔的选择不应仅依赖于通道直径,还应依赖于其他参数,如孔腔内的电荷分布。