Conrad T, Kniemeyer O, Henkel S G, Krüger T, Mattern D J, Valiante V, Guthke R, Jacobsen I D, Brakhage A A, Vlaic S, Linde J
Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
BMC Syst Biol. 2018 Oct 20;12(1):88. doi: 10.1186/s12918-018-0620-8.
Omics data provide deep insights into overall biological processes of organisms. However, integration of data from different molecular levels such as transcriptomics and proteomics, still remains challenging. Analyzing lists of differentially abundant molecules from diverse molecular levels often results in a small overlap mainly due to different regulatory mechanisms, temporal scales, and/or inherent properties of measurement methods. Module-detecting algorithms identifying sets of closely related proteins from protein-protein interaction networks (PPINs) are promising approaches for a better data integration.
Here, we made use of transcriptome, proteome and secretome data from the human pathogenic fungus Aspergillus fumigatus challenged with the antifungal drug caspofungin. Caspofungin targets the fungal cell wall which leads to a compensatory stress response. We analyzed the omics data using two different approaches: First, we applied a simple, classical approach by comparing lists of differentially expressed genes (DEGs), differentially synthesized proteins (DSyPs) and differentially secreted proteins (DSePs); second, we used a recently published module-detecting approach, ModuleDiscoverer, to identify regulatory modules from PPINs in conjunction with the experimental data. Our results demonstrate that regulatory modules show a notably higher overlap between the different molecular levels and time points than the classical approach. The additional structural information provided by regulatory modules allows for topological analyses. As a result, we detected a significant association of omics data with distinct biological processes such as regulation of kinase activity, transport mechanisms or amino acid metabolism. We also found a previously unreported increased production of the secondary metabolite fumagillin by A. fumigatus upon exposure to caspofungin. Furthermore, a topology-based analysis of potential key factors contributing to drug-caused side effects identified the highly conserved protein polyubiquitin as a central regulator. Interestingly, polyubiquitin UbiD neither belonged to the groups of DEGs, DSyPs nor DSePs but most likely strongly influenced their levels.
Module-detecting approaches support the effective integration of multilevel omics data and provide a deep insight into complex biological relationships connecting these levels. They facilitate the identification of potential key players in the organism's stress response which cannot be detected by commonly used approaches comparing lists of differentially abundant molecules.
组学数据能深入洞察生物体的整体生物学过程。然而,整合来自不同分子水平(如转录组学和蛋白质组学)的数据仍然具有挑战性。分析来自不同分子水平的差异丰富分子列表往往导致重叠较少,这主要是由于不同的调控机制、时间尺度和/或测量方法的固有特性。从蛋白质-蛋白质相互作用网络(PPINs)中识别紧密相关蛋白质集的模块检测算法是实现更好数据整合的有前景的方法。
在此,我们利用了来自人类致病真菌烟曲霉在抗真菌药物卡泊芬净作用下的转录组、蛋白质组和分泌组数据。卡泊芬净靶向真菌细胞壁,从而引发补偿性应激反应。我们使用两种不同方法分析组学数据:首先,我们应用一种简单的经典方法,即比较差异表达基因(DEGs)、差异合成蛋白质(DSyPs)和差异分泌蛋白质(DSePs)列表;其次,我们使用最近发表的模块检测方法ModuleDiscoverer,结合实验数据从PPINs中识别调控模块。我们的结果表明,与经典方法相比,调控模块在不同分子水平和时间点之间显示出明显更高的重叠。调控模块提供的额外结构信息允许进行拓扑分析。结果,我们检测到组学数据与不同生物学过程(如激酶活性调控、转运机制或氨基酸代谢)之间存在显著关联。我们还发现烟曲霉在接触卡泊芬净后,其次级代谢产物烟曲霉素的产量增加,这一现象此前未被报道。此外,基于拓扑结构对导致药物副作用的潜在关键因素进行分析,确定高度保守的蛋白质多聚泛素是一个核心调节因子。有趣的是,多聚泛素UbiD既不属于DEGs、DSyPs组,也不属于DSePs组,但很可能强烈影响它们的水平。
模块检测方法支持多水平组学数据的有效整合,并能深入了解连接这些水平的复杂生物学关系。它们有助于识别生物体应激反应中的潜在关键参与者,而这些是常用的比较差异丰富分子列表的方法无法检测到的。