Suppr超能文献

基于协同作用的踝关节角度和扭矩高斯过程估计:主动式机器人足部假肢/矫形器高级控制的概念化

Synergy-Based Gaussian Process Estimation of Ankle Angle and Torque: Conceptualization for High Level Controlling of Active Robotic Foot Prostheses/Orthoses.

作者信息

Eslamy Mahdy, Alipour Khalil

机构信息

Advanced Service Robots (ASR) Laboratory,Department of Mechatronics Engineering,Faculty of New Sciences and Technologies,University of Tehran,P.O. Box 1439957131,Tehran 1439957131, Iran.

出版信息

J Biomech Eng. 2019 Feb 1;141(2). doi: 10.1115/1.4041767.

Abstract

Human gait is the result of a complex and fascinating cooperation between different joints and segments in the lower extremity. This study aims at investigating the existence of this cooperation or the so-called synergy between the shank motion and the ankle motion. One potential use of this synergy is to develop the high level controllers for active foot prostheses/orthoses. The central point in this paper is to develop a high level controller that is able to continuously map shank kinematics (inputs) to ankle angles and torques (outputs). At the same time, it does not require speed determination, gait percent identification, switching rules, and look-up tables. Furthermore, having those targets in mind, an important part of this study is to determine which input type is required to achieve such targets. This should be fulfilled through using minimum number of inputs. To do this, the Gaussian process (GP) regression has been used to estimate the ankle angles and torques for 11 subjects at three walking speeds (0.5, 1, and 1.5 m/s) based on the shank angular velocity and angle. The results show that it is possible to estimate ankle motion based on the shank motion. It was found that the estimation achieved less quality with only shank angular velocity or angle, whereas the aggregated angular velocity and angle resulted in much higher output estimation quality. In addition, the estimation quality was acceptable for the speeds that there was a training procedure before and when it was tested for the untrained speeds, the estimation quality was not as acceptable as before. The pros and cons of the proposed method are investigated at different scenarios.

摘要

人类步态是下肢不同关节和节段之间复杂而迷人的协同作用的结果。本研究旨在探究这种协同作用的存在,即小腿运动与踝关节运动之间的所谓协同效应。这种协同效应的一个潜在用途是开发用于主动式足部假肢/矫形器的高级控制器。本文的核心要点是开发一种高级控制器,该控制器能够将小腿运动学(输入)连续映射到踝关节角度和扭矩(输出)。同时,它不需要速度确定、步态百分比识别、切换规则和查找表。此外,考虑到这些目标,本研究的一个重要部分是确定实现这些目标所需的输入类型。这应该通过使用最少数量的输入来实现。为此,基于小腿角速度和角度,使用高斯过程(GP)回归来估计11名受试者在三种步行速度(0.5、1和1.5米/秒)下的踝关节角度和扭矩。结果表明,基于小腿运动来估计踝关节运动是可行的。研究发现,仅使用小腿角速度或角度时,估计质量较低,而综合角速度和角度则能带来更高的输出估计质量。此外,对于有训练过程的速度,估计质量是可以接受的,而当对未训练的速度进行测试时,估计质量不如之前那么理想。在不同场景下对所提出方法的优缺点进行了研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验