Suppr超能文献

预测成人当前糖化血红蛋白值:基于电子健康记录开发算法

Predicting Current Glycated Hemoglobin Values in Adults: Development of an Algorithm From the Electronic Health Record.

作者信息

Wells Brian J, Lenoir Kristin M, Diaz-Garelli Jose-Franck, Futrell Wendell, Lockerman Elizabeth, Pantalone Kevin M, Kattan Michael W

机构信息

Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States.

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.

出版信息

JMIR Med Inform. 2018 Oct 22;6(4):e10780. doi: 10.2196/10780.

Abstract

BACKGROUND

Electronic, personalized clinical decision support tools to optimize glycated hemoglobin (HbA) screening are lacking. Current screening guidelines are based on simple, categorical rules developed for populations of patients. Although personalized diabetes risk calculators have been created, none are designed to predict current glycemic status using structured data commonly available in electronic health records (EHRs).

OBJECTIVE

The goal of this project was to create a mathematical equation for predicting the probability of current elevations in HbA (≥5.7%) among patients with no history of hyperglycemia using readily available variables that will allow integration with EHR systems.

METHODS

The reduced model was compared head-to-head with calculators created by Baan and Griffin. Ten-fold cross-validation was used to calculate the bias-adjusted prediction accuracy of the new model. Statistical analyses were performed in R version 3.2.5 (The R Foundation for Statistical Computing) using the rms (Regression Modeling Strategies) package.

RESULTS

The final model to predict an elevated HbA based on 22,635 patient records contained the following variables in order from most to least importance according to their impact on the discriminating accuracy of the model: age, body mass index, random glucose, race, serum non-high-density lipoprotein, serum total cholesterol, estimated glomerular filtration rate, and smoking status. The new model achieved a concordance statistic of 0.77 which was statistically significantly better than prior models. The model appeared to be well calibrated according to a plot of the predicted probabilities versus the prevalence of the outcome at different probabilities.

CONCLUSIONS

The calculator created for predicting the probability of having an elevated HbA significantly outperformed the existing calculators. The personalized prediction model presented in this paper could improve the efficiency of HbA screening initiatives.

摘要

背景

缺乏用于优化糖化血红蛋白(HbA)筛查的电子个性化临床决策支持工具。当前的筛查指南基于为患者群体制定的简单分类规则。尽管已经创建了个性化糖尿病风险计算器,但没有一个旨在使用电子健康记录(EHR)中常见的结构化数据来预测当前血糖状态。

目的

本项目的目标是创建一个数学方程式,用于预测无高血糖病史患者当前HbA升高(≥5.7%)的概率,使用易于获得的变量,以便与EHR系统集成。

方法

将简化模型与Baan和Griffin创建的计算器进行直接比较。采用十折交叉验证来计算新模型的偏差调整预测准确性。使用rms(回归建模策略)包在R 3.2.5版本(R统计计算基金会)中进行统计分析。

结果

基于22635份患者记录预测HbA升高的最终模型包含以下变量,根据它们对模型判别准确性的影响从最重要到最不重要依次为:年龄、体重指数、随机血糖、种族、血清非高密度脂蛋白、血清总胆固醇、估计肾小球滤过率和吸烟状况。新模型的一致性统计量为0.77,在统计学上显著优于先前的模型。根据预测概率与不同概率下结果患病率的关系图,该模型似乎校准良好。

结论

为预测HbA升高概率而创建的计算器明显优于现有计算器。本文提出的个性化预测模型可提高HbA筛查计划的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验