Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Nat Med. 2018 Nov;24(11):1762-1772. doi: 10.1038/s41591-018-0203-7. Epub 2018 Oct 22.
Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)-associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide-MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies.
在传染病、自身免疫和肿瘤免疫领域,鉴定免疫优势 T 细胞表位仍然是一个重大挑战。为了解决抗原发现的难题,我们开发了一种定量蛋白质组学方法,能够公正地鉴定主要组织相容性复合体 II(MHCII)相关肽表位和抗原性的生化特征。基于这些数据,我们训练了一个深度神经网络模型,用于全基因组预测免疫优势 MHCII 限制性表位。我们将这个模型命名为细菌起源的 T 细胞抗原(BOTA)预测器。在验证研究中,BOTA 准确地预测了来自模型病原体李斯特菌和共生微生物穆里巴库姆肠内的新型 CD4 T 细胞表位。为了最终确定 BOTA 预测的免疫优势 T 细胞表位,我们开发了一种高通量方法,用于筛选 DNA 编码肽-MHCII 文库,以通过单细胞 RNA 测序鉴定的 T 细胞受体进行功能识别。总之,这些研究为定义广泛的免疫病理学中的免疫优势景观提供了一个框架。